cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321515 Number of nonnegative integer matrices with sum of entries equal to n, no zero rows or columns, and distinct rows and columns.

This page as a plain text file.
%I A321515 #34 Jan 24 2024 18:32:10
%S A321515 1,1,3,19,137,1209,12899,160395,2276229,36323217,643848837,
%T A321515 12551081501,266868756473,6146455542737,152439235077709,
%U A321515 4050427673024753,114791270281213209,3456412742412516649,110191808168628510207,3708004806262196242699,131339701217968663631857
%N A321515 Number of nonnegative integer matrices with sum of entries equal to n, no zero rows or columns, and distinct rows and columns.
%H A321515 Andrew Howroyd, <a href="/A321515/b321515.txt">Table of n, a(n) for n = 0..40</a>
%e A321515 The a(3) = 19 matrices:
%e A321515   [3] [2 1] [1 2]
%e A321515 .
%e A321515   [2] [2 0] [1 1] [1 1] [1] [1 0] [1 0] [0 2] [0 1] [0 1]
%e A321515   [1] [0 1] [1 0] [0 1] [2] [1 1] [0 2] [1 0] [2 0] [1 1]
%e A321515 .
%e A321515   [1 0 0] [1 0 0] [0 1 0] [0 1 0] [0 0 1] [0 0 1]
%e A321515   [0 1 0] [0 0 1] [1 0 0] [0 0 1] [1 0 0] [0 1 0]
%e A321515   [0 0 1] [0 1 0] [0 0 1] [1 0 0] [0 1 0] [1 0 0]
%t A321515 multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
%t A321515 prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
%t A321515 Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],UnsameQ@@prs2mat[#],UnsameQ@@Transpose[prs2mat[#]]]&]],{n,5}]
%o A321515 (PARI) \\ Q(m,n,wf) defined in A321588.
%o A321515 seq(n)={my(R=vectorv(n,m,Q(m,n,w->1/(1 - y^w) + O(y*y^n)))); for(i=2, #R, R[i] -= i*R[i-1]); Vec(1 + vecsum(vecsum(R)))} \\ _Andrew Howroyd_, Jan 24 2024
%Y A321515 Cf. A007716, A120733, A283877, A316980, A319559, A321446, A321586, A321588.
%K A321515 nonn
%O A321515 0,3
%A A321515 _Gus Wiseman_, Nov 13 2018
%E A321515 a(7) onwards from _Andrew Howroyd_, Jan 20 2024