cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321572 Related to the set of Motzkin trees where all leaves are at the same unary height 2.

This page as a plain text file.
%I A321572 #17 Feb 12 2021 12:12:32
%S A321572 0,1,0,1,1,3,2,9,7,27,25,85,86,287,296,975,1065,3369,3825,11887,13836,
%T A321572 42389,50597,152549,186186,554103,688494,2027304,2559958,7461971,
%U A321572 9561298,27617581,35846863,102707431,134874639,383561963,509090498,1437822479,1927045425
%N A321572 Related to the set of Motzkin trees where all leaves are at the same unary height 2.
%C A321572 Row 2 of A321396, see section 3.2 in O. Bodini et al.
%H A321572 Olivier Bodini, Danièle Gardy, Bernhard Gittenberger, Zbigniew Gołębiewski, <a href="http://arxiv.org/abs/1510.01167">On the number of unary-binary tree-like structures with restrictions on the unary height</a>, arXiv:1510.01167v1 [math.CO], 2015.
%F A321572 G.f.: (1 - sqrt(1 - 2*z + 2*z*sqrt(1 - 2*z + 2*z*sqrt(1 - 4*z^2))))/(2*z^3).
%p A321572 gf := -(sqrt(2*z*(sqrt(2*z*(sqrt(1-4*z^2)-1)+1)-1)+1)-1)/(2*z^3):
%p A321572 series(gf,z,44): seq(coeff(%,z,n), n=0..38);
%t A321572 CoefficientList[(1 - Sqrt[2 Sqrt[2 Sqrt[1 - 4z^2] z - 2z + 1] z - 2z + 1])/ (2z^3) + O[z]^40, z] (* _Jean-François Alcover_, Jun 03 2019 *)
%Y A321572 Cf. A321396.
%K A321572 nonn
%O A321572 0,6
%A A321572 _Peter Luschny_, Nov 14 2018