This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321584 #12 Jan 17 2024 14:29:15 %S A321584 1,1,2,6,27,159,1154,9968,99861,1138234,14544650,205927012,3199714508, %T A321584 54131864317,990455375968,19488387266842,410328328297512, %U A321584 9205128127109576,219191041679766542,5521387415218119528,146689867860276432637,4099255234885039058842,120199458455807733040338 %N A321584 Number of connected (0,1)-matrices with n ones and no zero rows or columns. %C A321584 A matrix is connected if the positions in each row (or each column) of the nonzero entries form a connected hypergraph. %H A321584 Andrew Howroyd, <a href="/A321584/b321584.txt">Table of n, a(n) for n = 0..100</a> %e A321584 The a(4) = 27 matrices: %e A321584 [1111] %e A321584 . %e A321584 [111][111][111][11][110][110][101][101][100][011][011][010][001] %e A321584 [100][010][001][11][101][011][110][011][111][110][101][111][111] %e A321584 . %e A321584 [11][11][11][11][10][10][10][10][01][01][01][01] %e A321584 [10][10][01][01][11][11][10][01][11][11][10][01] %e A321584 [10][01][10][01][10][01][11][11][10][01][11][11] %e A321584 . %e A321584 [1] %e A321584 [1] %e A321584 [1] %e A321584 [1] %t A321584 csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; %t A321584 Table[Length[Select[Subsets[Tuples[Range[n],2],{n}],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],Length[csm[Map[Last,GatherBy[#,First],{2}]]]==1]&]],{n,6}] (* Mathematica 7.0+ *) %o A321584 (PARI) %o A321584 NonZeroCols(M)={my(C=Vec(M)); Mat(vector(#C, n, sum(k=1, n, (-1)^(n-k)*binomial(n,k)*C[k])))} %o A321584 ConnectedMats(M)={my([m,n]=matsize(M), R=matrix(m,n)); for(m=1, m, for(n=1, n, R[m,n] = M[m,n] - sum(i=1, m-1, sum(j=1, n-1, binomial(m-1,i-1)*binomial(n,j)*R[i,j]*M[m-i,n-j])))); R} %o A321584 seq(n)={my(M=matrix(n,n,i,j,sum(k=1, n, binomial(i*j,k)*x^k, O(x*x^n) ))); Vec(1 + vecsum(vecsum(Vec( ConnectedMats( NonZeroCols( NonZeroCols(M)~)) ))))} \\ _Andrew Howroyd_, Jan 17 2024 %Y A321584 Cf. A007716, A007718, A049311, A056156, A101370, A104602, A120733, A283877, A319557, A319647, A319616-A319629, A321585. %K A321584 nonn %O A321584 0,3 %A A321584 _Gus Wiseman_, Nov 13 2018 %E A321584 a(7) onwards from _Andrew Howroyd_, Jan 17 2024