This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321585 #14 Jan 19 2024 10:55:25 %S A321585 1,1,3,11,52,312,2290,19920,200522,2293677,29389005,416998371, %T A321585 6490825772,109972169413,2014696874717,39684502845893,836348775861331, %U A321585 18777970539419957,447471215460930665,11279275874429302811,299844572529989373703,8383794111721619471384,245956060268568277412668 %N A321585 Number of connected nonnegative integer matrices with sum of entries equal to n and no zero rows or columns. %C A321585 A matrix is connected if the positions in each row (or each column) of the nonzero entries form a connected hypergraph. %H A321585 Andrew Howroyd, <a href="/A321585/b321585.txt">Table of n, a(n) for n = 0..100</a> %e A321585 The a(3) = 11 matrices: %e A321585 [3] [2 1] [1 2] [1 1 1] %e A321585 . %e A321585 [2] [1 1] [1 1] [1] [1 0] [0 1] %e A321585 [1] [1 0] [0 1] [2] [1 1] [1 1] %e A321585 . %e A321585 [1] %e A321585 [1] %e A321585 [1] %t A321585 multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]]; %t A321585 csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; %t A321585 Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],Length[csm[Map[Last,GatherBy[#,First],{2}]]]==1]&]],{n,5}] (* Mathematica 7.0+ *) %o A321585 (PARI) %o A321585 NonZeroCols(M)={my(C=Vec(M)); Mat(vector(#C, n, sum(k=1, n, (-1)^(n-k)*binomial(n,k)*C[k])))} %o A321585 ConnectedMats(M)={my([m,n]=matsize(M), R=matrix(m,n)); for(m=1, m, for(n=1, n, R[m,n] = M[m,n] - sum(i=1, m-1, sum(j=1, n-1, binomial(m-1,i-1)*binomial(n,j)*R[i,j]*M[m-i,n-j])))); R} %o A321585 seq(n)={my(M=matrix(n,n,i,j,sum(k=1, n, binomial(i*j+k-1,k)*x^k, O(x*x^n) ))); Vec(1 + vecsum(vecsum(Vec( ConnectedMats( NonZeroCols( NonZeroCols(M)~))))))} \\ _Andrew Howroyd_, Jan 17 2024 %Y A321585 Cf. A007718, A056156, A120733, A319557, A319565, A319647, A319616-A319629, A321584. %K A321585 nonn %O A321585 0,3 %A A321585 _Gus Wiseman_, Nov 13 2018 %E A321585 a(7) onwards from _Andrew Howroyd_, Jan 17 2024