cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321586 Number of nonnegative integer matrices with sum of entries equal to n, no zero rows or columns, and distinct rows (or distinct columns).

This page as a plain text file.
%I A321586 #12 Sep 16 2019 21:15:01
%S A321586 1,1,4,26,204,1992,23336,318080,4948552,86550424,1681106080,
%T A321586 35904872576,836339613984,21100105791936,573194015723840,
%U A321586 16681174764033728,517768654898701120,17074080118403865856,596117945858272441408,21967609729338776864384,852095613819396775627200
%N A321586 Number of nonnegative integer matrices with sum of entries equal to n, no zero rows or columns, and distinct rows (or distinct columns).
%H A321586 Alois P. Heinz, <a href="/A321586/b321586.txt">Table of n, a(n) for n = 0..200</a>
%e A321586 The a(3) = 26 matrices:
%e A321586   [3][21][12][111]
%e A321586 .
%e A321586   [2][20][11][11][110][101][1][10][10][100][02][011][01][01][010][001]
%e A321586   [1][01][10][01][001][010][2][11][02][011][10][100][20][11][101][110]
%e A321586 .
%e A321586   [100][100][010][010][001][001]
%e A321586   [010][001][100][001][100][010]
%e A321586   [001][010][001][100][010][100]
%p A321586 C:= binomial:
%p A321586 b:= proc(n, i, k, p) option remember; `if`(n=0, p!, `if`(i<1, 0, add(
%p A321586       b(n-i*j, min(n-i*j, i-1), k, p+j)*C(C(k+i-1, i), j), j=0..n/i)))
%p A321586     end:
%p A321586 a:= n-> add(add(b(n$2, i, 0)*(-1)^(k-i)*C(k, i), i=0..k), k=0..n):
%p A321586 seq(a(n), n=0..21);  # _Alois P. Heinz_, Sep 16 2019
%t A321586 multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
%t A321586 prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
%t A321586 Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],UnsameQ@@prs2mat[#]]&]],{n,5}]
%Y A321586 Cf. A007716, A049311, A101370, A120733, A283877, A316980, A321446, A321587.
%Y A321586 Row sums of A327245.
%K A321586 nonn
%O A321586 0,3
%A A321586 _Gus Wiseman_, Nov 13 2018
%E A321586 a(7)-a(20) from _Alois P. Heinz_, Sep 16 2019