cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321588 Number of connected nonnegative integer matrices with sum of entries equal to n, no zero rows or columns, and distinct rows and columns.

This page as a plain text file.
%I A321588 #12 Jan 24 2024 18:33:19
%S A321588 1,1,1,9,29,181,1285,10635,102355,1118021,13637175,184238115,
%T A321588 2727293893,43920009785,764389610843,14297306352937,286014489487815,
%U A321588 6093615729757841,137750602009548533,3293082026520294529,83006675263513350581,2200216851785981586729,61180266502369886181253
%N A321588 Number of connected nonnegative integer matrices with sum of entries equal to n, no zero rows or columns, and distinct rows and columns.
%C A321588 A matrix is connected if the positions in each row (or each column) of the nonzero entries form a connected hypergraph.
%H A321588 Andrew Howroyd, <a href="/A321588/b321588.txt">Table of n, a(n) for n = 0..40</a>
%e A321588 The a(4) = 29 matrices:
%e A321588 4 31 13
%e A321588 .
%e A321588 3 21 21 20 12 12 11 110 11 110 101 101 1 10 10 02 011 011 01 01
%e A321588 1 10 01 11 10 01 20 101 02 011 110 011 3 21 12 11 110 101 21 12
%e A321588 .
%e A321588 11 11 10 10 01 01
%e A321588 10 01 11 01 11 10
%e A321588 01 10 01 11 10 11
%t A321588 prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
%t A321588 multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
%t A321588 csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
%t A321588 Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],UnsameQ@@prs2mat[#],UnsameQ@@Transpose[prs2mat[#]],Length[csm[Map[Last,GatherBy[#,First],{2}]]]==1]&]],{n,6}]
%o A321588 (PARI)
%o A321588 permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
%o A321588 K(q,t,wf)={prod(j=1, #q, wf(t*q[j]))-1}
%o A321588 Q(m,n,wf=w->2)={my(s=0); forpart(p=m, s+=(-1)^#p*permcount(p)*exp(-sum(t=1, n, (-1)^t*x^t*K(p,t,wf)/t, O(x*x^n))) ); Vec((-1)^m*serchop(serlaplace(s),1), -n)}
%o A321588 ConnectedMats(M)={my([m, n]=matsize(M), R=matrix(m, n)); for(m=1, m, for(n=1, n, R[m, n] = M[m, n] - sum(i=1, m-1, sum(j=1, n-1, binomial(m-1, i-1)*binomial(n, j)*R[i, j]*M[m-i, n-j])))); R}
%o A321588 seq(n)={my(R=vectorv(n,m,Q(m,n,w->1/(1 - y^w) + O(y*y^n)))); for(i=2, #R, R[i] -= i*R[i-1]); Vec(1 + vecsum( vecsum( Vec( ConnectedMats( Mat(R))))))} \\ _Andrew Howroyd_, Jan 24 2024
%Y A321588 Cf. A007718, A056156, A059201, A120733, A283877, A316980, A319557, A319558, A319559, A319565, A319647, A319616-A319629, A321446, A321515, A369285.
%K A321588 nonn
%O A321588 0,4
%A A321588 _Gus Wiseman_, Nov 13 2018
%E A321588 a(7) onwards from _Andrew Howroyd_, Jan 24 2024