cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321601 G.f.: A(x,y) = Sum_{n=-oo...+oo} (x^n + y)^n = Sum_{n>=0} Sum_{k>=0} T(n,k) * x^(n^2 + n*k) * y^k, written here as a rectangle of coefficients T(n,k) read by antidiagonals.

Table of values

n a(n)
0 1
1 2
2 1
3 2
4 1
5 1
6 2
7 1
8 4
9 1
10 2
11 1
12 9
13 3
14 1
15 2
16 1
17 16
18 6
19 6
20 1
21 2
22 1
23 25
24 10
25 20
26 5
27 1
28 2
29 1
30 36
31 15
32 50
33 15
34 8
35 1
36 2
37 1
38 49
39 21
40 105
41 35
42 35
43 7
44 1
45 2
46 1
47 64
48 28
49 196
50 70
51 112
52 28
53 10
54 1
55 2
56 1
57 81
58 36
59 336
60 126
61 294
62 84
63 54
64 9
65 1
66 2
67 1
68 100
69 45
70 540
71 210
72 672
73 210
74 210
75 45
76 12
77 1
78 2
79 1
80 121
81 55
82 825
83 330
84 1386
85 462
86 660
87 165
88 77
89 11
90 1
91 2
92 1
93 144
94 66
95 1210
96 495
97 2640
98 924
99 1782
100 495
101 352
102 66
103 14
104 1
105 2
106 1
107 169
108 78
109 1716
110 715
111 4719
112 1716
113 4290
114 1287
115 1287
116 286
117 104
118 13
119 1
120 2
121 1
122 196
123 91
124 2366
125 1001
126 8008
127 3003
128 9438
129 3003
130 4004
131 1001
132 546
133 91
134 16
135 1
136 2
137 1
138 225
139 105
140 3185
141 1365
142 13013
143 5005
144 19305
145 6435
146 11011
147 3003
148 2275
149 455
150 135
151 15
152 1

List of values

[1, 2, 1, 2, 1, 1, 2, 1, 4, 1, 2, 1, 9, 3, 1, 2, 1, 16, 6, 6, 1, 2, 1, 25, 10, 20, 5, 1, 2, 1, 36, 15, 50, 15, 8, 1, 2, 1, 49, 21, 105, 35, 35, 7, 1, 2, 1, 64, 28, 196, 70, 112, 28, 10, 1, 2, 1, 81, 36, 336, 126, 294, 84, 54, 9, 1, 2, 1, 100, 45, 540, 210, 672, 210, 210, 45, 12, 1, 2, 1, 121, 55, 825, 330, 1386, 462, 660, 165, 77, 11, 1, 2, 1, 144, 66, 1210, 495, 2640, 924, 1782, 495, 352, 66, 14, 1, 2, 1, 169, 78, 1716, 715, 4719, 1716, 4290, 1287, 1287, 286, 104, 13, 1, 2, 1, 196, 91, 2366, 1001, 8008, 3003, 9438, 3003, 4004, 1001, 546, 91, 16, 1, 2, 1, 225, 105, 3185, 1365, 13013, 5005, 19305, 6435, 11011, 3003, 2275, 455, 135, 15, 1]