This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321615 #22 Jan 17 2024 14:50:15 %S A321615 1,0,1,0,1,1,0,1,2,1,0,1,6,3,1,0,1,9,13,3,1,0,1,17,38,20,3,1,0,1,23, %T A321615 97,82,23,3,1,0,1,36,217,311,126,24,3,1,0,1,46,453,968,624,151,24,3,1, %U A321615 0,1,65,868,2825,2637,933,162,24,3,1,0,1,80,1585,7394,10098,4942,1132,165,24,3,1 %N A321615 Triangle read by rows: T(n,k) is the number of k X k integer matrices with sum of elements n, with no zero rows or columns, up to row and column permutation. %C A321615 Also the number of non-isomorphic multiset partitions of weight n with k parts and k vertices, where the weight of a multiset partition is the sum of sizes of its parts. - _Gus Wiseman_, Nov 18 2018 %H A321615 Andrew Howroyd, <a href="/A321615/b321615.txt">Table of n, a(n) for n = 0..1325</a> (rows 0..50) %e A321615 Triangle begins: %e A321615 1 %e A321615 0 1 %e A321615 0 1 1 %e A321615 0 1 2 1 %e A321615 0 1 6 3 1 %e A321615 0 1 9 13 3 1 %e A321615 0 1 17 38 20 3 1 %e A321615 0 1 23 97 82 23 3 1 %e A321615 0 1 36 217 311 126 24 3 1 %e A321615 0 1 46 453 968 624 151 24 3 1 %e A321615 0 1 65 868 2825 2637 933 162 24 3 1 %t A321615 (* See A318795 for M[m, n, k]. *) %t A321615 T[n_, k_] := M[k, k, n] - 2 M[k, k-1, n] + M[k-1, k-1, n]; %t A321615 Table[T[n, k], {n, 1, 11}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Nov 24 2018, from PARI *) %o A321615 (PARI) \\ See A318795 for M. %o A321615 T(n, k) = if(k==0, n==0, M(k, k, n) - 2*M(k, k-1, n) + M(k-1, k-1, n)); %o A321615 (PARI) \\ See A340652 for G. %o A321615 T(n)={[Vecrev(p) | p<-Vec(1 + sum(k=1, n, y^k*(polcoef(G(k, n, n, y), k, y) - polcoef(G(k-1, n, n, y), k, y))))]} %o A321615 { my(A=T(10)); for(i=1, #A, print(A[i])) } \\ _Andrew Howroyd_, Jan 16 2024 %Y A321615 Columns k=0..3 are A000007, A000012, A054974, A054975. %Y A321615 Row sums are A319616. %Y A321615 Cf. A007716, A048291, A054976, A057149, A057150, A104601, A120732, A318795, A320808. %K A321615 nonn,tabl %O A321615 0,9 %A A321615 _Andrew Howroyd_, Nov 14 2018 %E A321615 Column k=0 inserted by _Andrew Howroyd_, Jan 17 2024