cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321621 The Riordan square of the Motzkin numbers, triangle read by rows, T(n, k) for 0 <= k <= n.

This page as a plain text file.
%I A321621 #16 Apr 18 2025 13:12:35
%S A321621 1,1,1,2,3,1,4,8,5,1,9,21,18,7,1,21,55,58,32,9,1,51,145,177,123,50,11,
%T A321621 1,127,385,525,431,224,72,13,1,323,1030,1532,1429,889,369,98,15,1,835,
%U A321621 2775,4428,4572,3269,1639,566,128,17,1
%N A321621 The Riordan square of the Motzkin numbers, triangle read by rows, T(n, k) for 0 <= k <= n.
%H A321621 Paul Barry, <a href="https://arxiv.org/abs/2504.09719">Notes on Riordan arrays and lattice paths</a>, arXiv:2504.09719 [math.CO], 2025. See pp. 16, 29.
%e A321621 [0][   1]
%e A321621 [1][   1,    1]
%e A321621 [2][   2,    3,    1]
%e A321621 [3][   4,    8,    5,    1]
%e A321621 [4][   9,   21,   18,    7,    1]
%e A321621 [5][  21,   55,   58,   32,    9,    1]
%e A321621 [6][  51,  145,  177,  123,   50,   11,   1]
%e A321621 [7][ 127,  385,  525,  431,  224,   72,  13,   1]
%e A321621 [8][ 323, 1030, 1532, 1429,  889,  369,  98,  15,  1]
%e A321621 [9][ 835, 2775, 4428, 4572, 3269, 1639, 566, 128, 17, 1]
%p A321621 # The function RiordanSquare is defined in A321620.
%p A321621 Motzkin := (1 - x - sqrt(1 - 2*x - 3*x^2))/(2*x^2); RiordanSquare(Motzkin, 10);
%t A321621 (* The function RiordanSquare is defined in A321620. *)
%t A321621 Motzkin = (1 - x - Sqrt[1 - 2 x - 3 x^2])/(2 x^2);
%t A321621 M = RiordanSquare[Motzkin, 10];
%t A321621 M // Flatten (* _Jean-François Alcover_, Nov 24 2018 *)
%o A321621 (Sage) # uses[riordan_square from A321620]
%o A321621 riordan_square((1 - x - sqrt(1 - 2*x - 3*x^2))/(2*x^2), 10)
%Y A321621 T(n, 0) = A001006 (Motzkin), A111961 (row sums), A000007 (alternating row sums).
%Y A321621 Cf. A321620.
%K A321621 tabl,nonn
%O A321621 0,4
%A A321621 _Peter Luschny_, Nov 22 2018