cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321622 The Riordan square of the Fine numbers, triangle read by rows, T(n, k) for 0 <= k<= n.

This page as a plain text file.
%I A321622 #11 Mar 27 2020 13:59:34
%S A321622 1,1,1,0,1,1,1,1,1,1,2,4,2,1,1,6,10,7,3,1,1,18,31,19,10,4,1,1,57,97,
%T A321622 61,29,13,5,1,1,186,316,196,96,40,16,6,1,1,622,1054,652,316,136,52,19,
%U A321622 7,1,1,2120,3586,2210,1072,458,181,65,22,8,1,1
%N A321622 The Riordan square of the Fine numbers, triangle read by rows, T(n, k) for 0 <= k<= n.
%C A321622 Fine numbers as defined in A000957 have a(0) = 0 whereas our variant has a(0) = 1. The rows sums of the triangle are |A002420|.
%e A321622 [0] [    1]
%e A321622 [1] [    1,     1]
%e A321622 [2] [    0,     1,     1]
%e A321622 [3] [    1,     1,     1,     1]
%e A321622 [4] [    2,     4,     2,     1,     1]
%e A321622 [5] [    6,    10,     7,     3,     1,     1]
%e A321622 [6] [   18,    31,    19,    10,     4,     1,   1]
%e A321622 [7] [   57,    97,    61,    29,    13,     5,   1,  1]
%e A321622 [8] [  186,   316,   196,    96,    40,    16,   6,  1,  1]
%e A321622 [9] [  622,  1054,   652,   316,   136,    52,  19,  7,  1,  1]
%p A321622 # The function RiordanSquare is defined in A321620.
%p A321622 Fine := 1 + (1 - sqrt(1 - 4*x))/(3 - sqrt(1 - 4*x)); RiordanSquare(Fine, 10);
%t A321622 (* The function RiordanSquare is defined in A321620. *)
%t A321622 FineGF = 1 + (1 - Sqrt[1 - 4x])/(3 - Sqrt[1 - 4x]);
%t A321622 RiordanSquare[FineGF, 10] (* _Jean-François Alcover_, Jun 15 2019, from Maple *)
%o A321622 (Sage) # uses[riordan_square from A321620]
%o A321622 riordan_square(1 + (1 - sqrt(1 - 4*x))/(3 - sqrt(1 - 4*x)), 10)
%Y A321622 T(n, 0) = A000957 (Fine), |A002420| (row sums), A000007 (alternating row sums).
%Y A321622 Cf. A321620.
%K A321622 nonn,tabl
%O A321622 0,11
%A A321622 _Peter Luschny_, Nov 22 2018