cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321623 The Riordan square of the large Schröder numbers, triangle read by rows, T(n, k) for 0 <= k <= n.

This page as a plain text file.
%I A321623 #20 Mar 27 2020 17:33:57
%S A321623 1,2,2,6,10,4,22,46,32,8,90,214,196,88,16,394,1018,1104,672,224,32,
%T A321623 1806,4946,6020,4448,2048,544,64,8558,24470,32400,27432,15584,5792,
%U A321623 1280,128,41586,122926,173572,162680,107408,49824,15552,2944,256
%N A321623 The Riordan square of the large Schröder numbers, triangle read by rows, T(n, k) for 0 <= k <= n.
%C A321623 Triangle, read by rows,given by [2,1,2,1,2,1,2,1,...]DELTA[2,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - _Philippe Deléham_, Feb 05 2020
%F A321623 T(n, k) = 2^k*A133367(n,k). - _Philippe Deléham_, Feb 05 2020
%e A321623 [0][     1]
%e A321623 [1][     2,      2]
%e A321623 [2][     6,     10,      4]
%e A321623 [3][    22,     46,     32,      8]
%e A321623 [4][    90,    214,    196,     88,     16]
%e A321623 [5][   394,   1018,   1104,    672,    224,     32]
%e A321623 [6][  1806,   4946,   6020,   4448,   2048,    544,     64]
%e A321623 [7][  8558,  24470,  32400,  27432,  15584,   5792,   1280,   128]
%e A321623 [8][ 41586, 122926, 173572, 162680, 107408,  49824,  15552,  2944,  256]
%e A321623 [9][206098, 625522, 929248, 942592, 697408, 379840, 149248, 40192, 6656, 512]
%p A321623 # The function RiordanSquare is defined in A321620.
%p A321623 LargeSchröder := x -> (1 - x - sqrt(1 - 6*x + x^2))/(2*x);
%p A321623 RiordanSquare(LargeSchröder(x), 10);
%t A321623 (* The function RiordanSquare is defined in A321620. *)
%t A321623 LargeSchröder[x_] := (1 - x - Sqrt[1 - 6*x + x^2])/(2*x);
%t A321623 RiordanSquare[LargeSchröder[x], 10] (* _Jean-François Alcover_, Jun 15 2019, from Maple *)
%o A321623 (Sage) # uses[riordan_square from A321620]
%o A321623 riordan_square((1 - x - sqrt(1 - 6*x + x^2))/(2*x), 10)
%Y A321623 T(n, 0) = A006318 (large Schröder), A321574 (row sums), A000007 (alternating row sums).
%Y A321623 Cf. A321620, A133367.
%K A321623 nonn,tabl
%O A321623 0,2
%A A321623 _Peter Luschny_, Nov 22 2018