This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321623 #20 Mar 27 2020 17:33:57 %S A321623 1,2,2,6,10,4,22,46,32,8,90,214,196,88,16,394,1018,1104,672,224,32, %T A321623 1806,4946,6020,4448,2048,544,64,8558,24470,32400,27432,15584,5792, %U A321623 1280,128,41586,122926,173572,162680,107408,49824,15552,2944,256 %N A321623 The Riordan square of the large Schröder numbers, triangle read by rows, T(n, k) for 0 <= k <= n. %C A321623 Triangle, read by rows,given by [2,1,2,1,2,1,2,1,...]DELTA[2,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - _Philippe Deléham_, Feb 05 2020 %F A321623 T(n, k) = 2^k*A133367(n,k). - _Philippe Deléham_, Feb 05 2020 %e A321623 [0][ 1] %e A321623 [1][ 2, 2] %e A321623 [2][ 6, 10, 4] %e A321623 [3][ 22, 46, 32, 8] %e A321623 [4][ 90, 214, 196, 88, 16] %e A321623 [5][ 394, 1018, 1104, 672, 224, 32] %e A321623 [6][ 1806, 4946, 6020, 4448, 2048, 544, 64] %e A321623 [7][ 8558, 24470, 32400, 27432, 15584, 5792, 1280, 128] %e A321623 [8][ 41586, 122926, 173572, 162680, 107408, 49824, 15552, 2944, 256] %e A321623 [9][206098, 625522, 929248, 942592, 697408, 379840, 149248, 40192, 6656, 512] %p A321623 # The function RiordanSquare is defined in A321620. %p A321623 LargeSchröder := x -> (1 - x - sqrt(1 - 6*x + x^2))/(2*x); %p A321623 RiordanSquare(LargeSchröder(x), 10); %t A321623 (* The function RiordanSquare is defined in A321620. *) %t A321623 LargeSchröder[x_] := (1 - x - Sqrt[1 - 6*x + x^2])/(2*x); %t A321623 RiordanSquare[LargeSchröder[x], 10] (* _Jean-François Alcover_, Jun 15 2019, from Maple *) %o A321623 (Sage) # uses[riordan_square from A321620] %o A321623 riordan_square((1 - x - sqrt(1 - 6*x + x^2))/(2*x), 10) %Y A321623 T(n, 0) = A006318 (large Schröder), A321574 (row sums), A000007 (alternating row sums). %Y A321623 Cf. A321620, A133367. %K A321623 nonn,tabl %O A321623 0,2 %A A321623 _Peter Luschny_, Nov 22 2018