A321624 The Riordan square of the Lucas numbers, triangle read by rows, T(n, k) for 0 <= k <= n.
1, 1, 1, 3, 4, 1, 4, 10, 7, 1, 7, 24, 26, 10, 1, 11, 49, 77, 51, 13, 1, 18, 98, 200, 190, 85, 16, 1, 29, 187, 473, 595, 390, 128, 19, 1, 47, 350, 1056, 1658, 1450, 704, 180, 22, 1, 76, 642, 2253, 4255, 4688, 3062, 1159, 241, 25, 1
Offset: 0
Examples
[0] [ 1] [1] [ 1, 1] [2] [ 3, 4, 1] [3] [ 4, 10, 7, 1] [4] [ 7, 24, 26, 10, 1] [5] [ 11, 49, 77, 51, 13, 1] [6] [ 18, 98, 200, 190, 85, 16, 1] [7] [ 29, 187, 473, 595, 390, 128, 19, 1] [8] [ 47, 350, 1056, 1658, 1450, 704, 180, 22, 1] [9] [ 76, 642, 2253, 4255, 4688, 3062, 1159, 241, 25, 1]
Crossrefs
Programs
-
Maple
# The function RiordanSquare is defined in A321620. Lucas := 1 + x*(1 + 2*x)/(1 - x - x^2); RiordanSquare(Lucas, 10);
-
Mathematica
(* The function RiordanSquare is defined in A321620. *) Lucas = 1 + x*(1 + 2*x)/(1 - x - x^2); RiordanSquare[Lucas, 10] (* Jean-François Alcover, Jun 15 2019, from Maple *)
-
Sage
# uses[riordan_square from A321620] riordan_square(1 + x*(1 + 2*x)/(1 - x - x^2), 10)
Formula
T(0,0) = 1, T(1,1) = 1, T(1,0) = 1, T(n,k) = 0 for k<0 and for k>n, T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n-2,k) + 2*T(n-2,k-1), for n>1. - Philippe Deléham, Feb 06 2020
Comments