A321625 The Riordan square of the swinging factorial (A056040), triangle read by rows, T(n, k) for 0 <= k<= n.
1, 1, 1, 2, 3, 1, 6, 10, 5, 1, 6, 22, 22, 7, 1, 30, 66, 66, 38, 9, 1, 20, 140, 218, 146, 58, 11, 1, 140, 372, 574, 542, 270, 82, 13, 1, 70, 826, 1680, 1708, 1134, 446, 110, 15, 1, 630, 1930, 4156, 5432, 4126, 2106, 682, 142, 17, 1
Offset: 0
Examples
[0] [ 1] [1] [ 1, 1] [2] [ 2, 3, 1] [3] [ 6, 10, 5, 1] [4] [ 6, 22, 22, 7, 1] [5] [ 30, 66, 66, 38, 9, 1] [6] [ 20, 140, 218, 146, 58, 11, 1] [7] [ 140, 372, 574, 542, 270, 82, 13, 1] [8] [ 70, 826, 1680, 1708, 1134, 446, 110, 15, 1] [9] [ 630, 1930, 4156, 5432, 4126, 2106, 682, 142, 17, 1]
Crossrefs
Programs
-
Maple
# The function RiordanSquare is defined in A321620. SwingingFactorial := (1 + x/(1 - 4*x^2))/sqrt(1 - 4*x^2); RiordanSquare(SwingingFactorial, 10);
-
Mathematica
(* The function RiordanSquare is defined in A321620. *) SwingingFactorial = (1 + x/(1 - 4*x^2))/Sqrt[1 - 4*x^2]; RiordanSquare[SwingingFactorial, 10] (* Jean-François Alcover, Jun 15 2019, from Maple *)
-
Sage
# uses[riordan_square from A321620] riordan_square((1 + x/(1 - 4*x^2))/sqrt(1 - 4*x^2), 10)