This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321627 #16 Feb 17 2020 11:37:36 %S A321627 1,1,1,3,4,1,15,21,7,1,105,144,48,10,1,945,1245,372,84,13,1,10395, %T A321627 13140,3357,726,129,16,1,135135,164745,35415,6873,1233,183,19,1, %U A321627 2027025,2399040,434520,73116,12306,1920,246,22,1 %N A321627 The Riordan square of the double factorial of odd numbers. Triangle T(n, k), 0 <= k <= n, read by rows. %C A321627 The Riordan square is defined in A321620. %C A321627 Triangle, read by rows, given by [1, 2, 3, 4, 5, 6, 7, …] DELTA [1, 0, 0, 0, 0, 0, 0, 0, …] where DELTA is the operator defined in A084938. - _Philippe Deléham_, Feb 17 2020 %e A321627 Triangle starts: %e A321627 [0][ 1] %e A321627 [1][ 1, 1] %e A321627 [2][ 3, 4, 1] %e A321627 [3][ 15, 21, 7, 1] %e A321627 [4][ 105, 144, 48, 10, 1] %e A321627 [5][ 945, 1245, 372, 84, 13, 1] %e A321627 [6][ 10395, 13140, 3357, 726, 129, 16, 1] %e A321627 [7][135135, 164745, 35415, 6873, 1233, 183, 19, 1] %p A321627 # The function RiordanSquare is defined in A321620. %p A321627 cf := proc(dim) local k, m; m := 1; %p A321627 for k from dim by -1 to 1 do m := 1 - k*x/m od; %p A321627 1/m end: RiordanSquare(cf(9), 9); %t A321627 (* The function RiordanSquare is defined in A321620. *) %t A321627 cf[dim_] := Module[{k, m=1}, For[k=dim, k >= 1, k--, m = 1 - k*x/m]; 1/m]; %t A321627 RiordanSquare[cf[9], 9] (* _Jean-François Alcover_, Jun 15 2019, from Maple *) %Y A321627 First column are the double factorial of odd numbers A001147. %Y A321627 Second column is number of singletons in pair-partitions A233481. %Y A321627 Row sums are A321628, alternating row sums are A000007. %Y A321627 Cf. A321620. %K A321627 nonn,tabl %O A321627 0,4 %A A321627 _Peter Luschny_, Dec 07 2018