cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321644 Squarefree odd composite numbers whose factors are all twin primes (not necessarily from the same pair).

Original entry on oeis.org

15, 21, 33, 35, 39, 51, 55, 57, 65, 77, 85, 87, 91, 93, 95, 105, 119, 123, 129, 133, 143, 145, 155, 165, 177, 183, 187, 195, 203, 205, 209, 213, 215, 217, 219, 221, 231, 247, 255, 273, 285, 287, 295, 301, 303, 305, 309, 319, 321, 323, 327, 341, 355, 357, 365
Offset: 1

Views

Author

Dimitris Valianatos, Nov 15 2018

Keywords

Comments

This sequence has infinitely many terms if and only if the twin prime conjecture is true.

Examples

			a(3) = 33 = 3 * 11; 3 and 11 are both twin primes, but not from the same pair.
		

Crossrefs

Subsequence of A024556, and hence of A056911, A061346, and A071904.
Cf. A001097.

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    P:= select(isprime, {seq(i,i=3..(N+6)/3,2)}):
    TP:= P intersect map(`-`,P,2):
    TP:= TP union map(`+`,TP,2):
    Agenda:= map(t -> [t],TP): Res:= NULL:
    while Agenda <> {} do
       Agenda:= map(proc(t) local s; seq([op(t),s], s = select(s -> s > t[-1] and s*convert(t,`*`) <= N , TP)) end proc, Agenda);
       Res:= Res, op(map(convert,Agenda,`*`));
    od:
    sort([Res]); # Robert Israel, Jan 27 2019
  • Mathematica
    seqQ[n_] := CompositeQ[n] && SquareFreeQ[n] && Module[{f = FactorInteger[n][[;;, 1]]}, Length[Select[f, PrimeQ[# - 2] || PrimeQ[# + 2] &]] == Length[f]]; Select[ Range[1, 365, 2], seqQ] (* Amiram Eldar, Nov 15 2018 *)
  • PARI
    {forcomposite(n=3, 1000, if(moebius(n) <> 0, v = factor(n)~; i = 0;for(k = 1, #v,p=v[1,k]; if(isprime(p-2)||isprime(p+2), i++));if(i==#v,print1(n", "))))}