A321645 Number of distinct row/column permutations of plane partitions of n.
1, 1, 3, 11, 32, 96, 290, 864, 2502, 7134, 20081
Offset: 0
Examples
The a(3) = 11 permutations of plane partitions: [3] [2 1] [1 2] [1 1 1] . [2] [1 1] [1 1] [1] [1 0] [0 1] [1] [1 0] [0 1] [2] [1 1] [1 1] . [1] [1] [1]
Crossrefs
Programs
-
Mathematica
submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{_,x_,W___}}/;submultisetQ[{Z},{W}]]]; multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]]; Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],OrderedQ[Sort[Map[Last,GatherBy[Sort[Reverse/@#],First],{2}],submultisetQ],submultisetQ],OrderedQ[Sort[Sort/@Map[Last,GatherBy[#,First],{2}],submultisetQ],submultisetQ]]&]],{n,6}]