cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321648 Number of permutations of the conjugate of the integer partition with Heinz number n.

This page as a plain text file.
%I A321648 #11 Dec 30 2018 00:03:56
%S A321648 1,1,1,1,1,2,1,1,1,3,1,2,1,4,3,1,1,2,1,3,6,5,1,2,1,6,1,4,1,6,1,1,10,7,
%T A321648 4,2,1,8,15,3,1,12,1,5,3,9,1,2,1,3,21,6,1,2,10,4,28,10,1,6,1,11,6,1,
%U A321648 20,20,1,7,36,12,1,2,1,12,3,8,5,30,1,3,1,13
%N A321648 Number of permutations of the conjugate of the integer partition with Heinz number n.
%C A321648 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
%H A321648 Antti Karttunen, <a href="/A321648/b321648.txt">Table of n, a(n) for n = 1..16384</a>
%F A321648 a(n) = A008480(A122111(n)).
%e A321648 The a(42) = 12 permutations: (3211), (3121), (3112), (2311), (2131), (2113), (1321), (1312), (1231), (1213), (1132), (1123).
%t A321648 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A321648 conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
%t A321648 Table[Length[Permutations[conj[primeMS[n]]]],{n,50}]
%o A321648 (PARI)
%o A321648 A008480(n) = {my(sig=factor(n)[, 2]); vecsum(sig)!/factorback(apply(k->k!, sig))}; \\ From A008480
%o A321648 A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
%o A321648 A122111(n) = if(1==n,n,prime(bigomega(n))*A122111(A064989(n)));
%o A321648 A321648(n) = A008480(A122111(n)); \\ _Antti Karttunen_, Dec 23 2018
%Y A321648 Cf. A008480, A056239, A112798, A122111, A296150, A321645, A321646, A321647, A321649, A321650.
%K A321648 nonn
%O A321648 1,6
%A A321648 _Gus Wiseman_, Nov 15 2018