This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321649 #8 Nov 15 2018 21:12:02 %S A321649 1,1,1,2,1,1,1,2,1,1,1,1,1,3,2,2,2,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,2,1, %T A321649 1,1,2,2,1,4,1,1,1,1,1,1,1,3,2,1,1,1,1,1,1,1,1,3,1,1,2,2,1,1,2,1,1,1, %U A321649 1,1,1,1,1,1,1,1,1,1,4,1,2,2,2,2,1,1,1 %N A321649 Irregular triangle whose n-th row is the conjugate of the integer partition with Heinz number n. %C A321649 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %F A321649 a(n,i) = A296150(A122111(n),i). %e A321649 Triangle begins: %e A321649 1 %e A321649 1 1 %e A321649 2 %e A321649 1 1 1 %e A321649 2 1 %e A321649 1 1 1 1 %e A321649 3 %e A321649 2 2 %e A321649 2 1 1 %e A321649 1 1 1 1 1 %e A321649 3 1 %e A321649 1 1 1 1 1 1 %e A321649 2 1 1 1 %e A321649 2 2 1 %e A321649 4 %e A321649 1 1 1 1 1 1 1 %e A321649 3 2 %e A321649 1 1 1 1 1 1 1 1 %e A321649 3 1 1 %e A321649 2 2 1 1 %e A321649 2 1 1 1 1 %e A321649 1 1 1 1 1 1 1 1 1 %e A321649 The sequence of dual partitions begins: (), (1), (11), (2), (111), (21), (1111), (3), (22), (211), (11111), (31), (111111), (2111), (221), (4), (1111111), (32), (11111111), (311), (2211), (21111), (111111111), (41), (222), (211111), (33), (3111), (1111111111), (321). %t A321649 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A321649 conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; %t A321649 Table[conj[primeMS[n]],{n,30}] %Y A321649 Cf. A008480, A056239, A112798, A122111, A296150, A321648, A321650. %K A321649 nonn,tabf %O A321649 1,4 %A A321649 _Gus Wiseman_, Nov 15 2018