This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321650 #5 Nov 15 2018 21:12:09 %S A321650 1,1,1,2,1,1,1,1,2,1,1,1,1,3,2,2,1,1,2,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1, %T A321650 1,2,1,2,2,4,1,1,1,1,1,1,1,2,3,1,1,1,1,1,1,1,1,1,1,3,1,1,2,2,1,1,1,1, %U A321650 2,1,1,1,1,1,1,1,1,1,1,4,2,2,2,1,1,1,1 %N A321650 Irregular triangle whose n-th row is the reversed conjugate of the integer partition with Heinz number n. %C A321650 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %F A321650 a(n,i) = A112798(A122111(n),i). %e A321650 Triangle begins: %e A321650 1 %e A321650 1 1 %e A321650 2 %e A321650 1 1 1 %e A321650 1 2 %e A321650 1 1 1 1 %e A321650 3 %e A321650 2 2 %e A321650 1 1 2 %e A321650 1 1 1 1 1 %e A321650 1 3 %e A321650 1 1 1 1 1 1 %e A321650 1 1 1 2 %e A321650 1 2 2 %e A321650 4 %e A321650 1 1 1 1 1 1 1 %e A321650 2 3 %e A321650 1 1 1 1 1 1 1 1 %e A321650 1 1 3 %e A321650 1 1 2 2 %e A321650 1 1 1 1 2 %e A321650 1 1 1 1 1 1 1 1 1 %e A321650 The sequence of reversed dual partitions begins: (), (1), (11), (2), (111), (12), (1111), (3), (22), (112), (11111), (13), (111111), (1112), (122), (4), (1111111), (23), (11111111), (113), (1122), (11112), (111111111), (14), (222), (111112), (33), (1113), (1111111111), (123). %t A321650 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A321650 conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; %t A321650 Table[Sort[conj[primeMS[n]]],{n,50}] %Y A321650 Cf. A008480, A056239, A112798, A122111, A296150, A321648, A321649. %K A321650 nonn,tabf %O A321650 1,4 %A A321650 _Gus Wiseman_, Nov 15 2018