This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321652 #18 Jun 11 2025 17:19:17 %S A321652 1,1,5,19,107,573,4050,29093,249301,2271020,23378901,257871081, %T A321652 3132494380,40693204728,572089068459,8566311524788,137165829681775, %U A321652 2327192535461323,41865158805428687,793982154675640340,15863206077534914434,332606431999260837036,7309310804287502958322,167896287022455809865568 %N A321652 Number of nonnegative integer matrices with sum of entries equal to n and no zero rows or columns, with weakly decreasing row sums and column sums. %H A321652 Ludovic Schwob, <a href="/A321652/b321652.txt">Table of n, a(n) for n = 0..39</a> %H A321652 Ludovic Schwob, <a href="https://arxiv.org/abs/2506.04007">On the enumeration of double cosets and self-inverse double cosets</a>, arXiv:2506.04007 [math.CO], 2025. See p. 13. %F A321652 Sum of coefficients in the expansions of all homogeneous symmetric functions in terms of monomial symmetric functions. In other words, if Sum_{|y| = n} h(y) = Sum_{|y| = n} c_y * m(y), then a(n) = Sum_{|y| = n} c_y. %e A321652 The a(3) = 19 matrices: %e A321652 [3] [2 1] [1 1 1] %e A321652 . %e A321652 [2] [2 0] [1 1] [1 1 0] [1 0 1] [0 1 1] %e A321652 [1] [0 1] [1 0] [0 0 1] [0 1 0] [1 0 0] %e A321652 . %e A321652 [1] [1 0] [1 0] [1 0 0] [1 0 0] [0 1] [0 1 0] [0 1 0] [0 0 1] [0 0 1] %e A321652 [1] [1 0] [0 1] [0 1 0] [0 0 1] [1 0] [1 0 0] [0 0 1] [1 0 0] [0 1 0] %e A321652 [1] [0 1] [1 0] [0 0 1] [0 1 0] [1 0] [0 0 1] [1 0 0] [0 1 0] [1 0 0] %t A321652 prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}]; %t A321652 multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]]; %t A321652 Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],OrderedQ[Total/@prs2mat[#]],OrderedQ[Total/@Transpose[prs2mat[#]]]]&]],{n,6}] %Y A321652 Cf. A000219, A001970, A007716, A068313, A114736, A120733, A319646, A321645, A321653, A321654, A321655. %K A321652 nonn %O A321652 0,3 %A A321652 _Gus Wiseman_, Nov 15 2018 %E A321652 a(10) onwards from _Ludovic Schwob_, Aug 29 2023