A321665 Number of strict integer partitions of n containing no 1's or prime powers.
1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 2, 2, 2, 0, 3, 1, 3, 2, 4, 1, 5, 2, 5, 4, 6, 4, 9, 3, 8, 7, 10, 6, 13, 7, 13, 12, 16, 10, 20, 13, 22, 19, 24, 18, 32, 23, 34, 30, 37, 30, 49, 37, 50, 47, 58, 51, 73, 58, 77, 74, 89, 80, 108, 91, 116
Offset: 0
Keywords
Examples
The a(36) = 9 strict integer partitions: (36) (30,6) (21,15) (22,14) (24,12) (26,10) (18,12,6) (20,10,6) (14,12,10)
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..500 from Fausto A. C. Cariboni)
Crossrefs
Programs
-
Mathematica
nn=100; ser=Product[If[PrimePowerQ[n],1,1+x^n],{n,2,nn}]; CoefficientList[Series[ser,{x,0,nn}],x]
Formula
G.f.: Product_{k>=2, k not a prime power} 1 + x^k. - Joerg Arndt, Dec 22 2020