This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321682 #21 Feb 21 2024 01:20:48 %S A321682 0,1,2,4,5,10,13,14,19,20,22,23,46,67,68,77,82,85,86,101,106,109,110, %T A321682 115,116,118,119,238,355,356,461,466,469,470,503,526,547,548,557,562, %U A321682 565,566,623,646,667,668,677,682,685,686,701,706,709,710,715,716,718 %N A321682 Numbers with distinct digits in factorial base. %C A321682 This sequence is a variant of A010784; however here we have infinitely many terms (for example all the terms of A033312 belong to this sequence). %H A321682 Rémy Sigrist, <a href="/A321682/b321682.txt">Table of n, a(n) for n = 1..8179</a> (terms up to 13!) %H A321682 <a href="/index/Fa#facbase">Index entries for sequences related to factorial base representation</a>. %e A321682 The first terms, alongside the corresponding factorial base representations, are: %e A321682 n a(n) fac(a(n)) %e A321682 -- ---- --------- %e A321682 1 0 (0) %e A321682 2 1 (1) %e A321682 3 2 (1,0) %e A321682 4 4 (2,0) %e A321682 5 5 (2,1) %e A321682 6 10 (1,2,0) %e A321682 7 13 (2,0,1) %e A321682 8 14 (2,1,0) %e A321682 9 19 (3,0,1) %e A321682 10 20 (3,1,0) %e A321682 11 22 (3,2,0) %e A321682 12 23 (3,2,1) %e A321682 13 46 (1,3,2,0) %e A321682 14 67 (2,3,0,1) %p A321682 b:= proc(n, i) local r; `if`(n<i, [n], %p A321682 [b(iquo(n, i, 'r'), i+1)[], r]) %p A321682 end: %p A321682 t:= n-> (l-> is(nops(l)=nops({l[]})))(b(n, 2)): %p A321682 select(t, [$0..1000])[]; # _Alois P. Heinz_, Nov 16 2018 %t A321682 q[n_] := Module[{k = n, m = 2, r, s = {}}, While[{k, r} = QuotientRemainder[k, m]; k != 0|| r != 0, AppendTo[s, r]; m++]; UnsameQ @@ s]; Select[Range[0, 720], q] (* _Amiram Eldar_, Feb 21 2024 *) %o A321682 (PARI) is(n) = my (s=0); for (k=2, oo, if (n==0, return (1)); my (d=n%k); if (bittest(s,d), return (0), s+=2^d; n\=k)) %Y A321682 Cf. A010784, A033312, A108731. %K A321682 nonn,base %O A321682 1,3 %A A321682 _Rémy Sigrist_, Nov 16 2018