A321689 Approximation of the 2-adic integer exp(-4) up to 2^n.
0, 1, 1, 5, 5, 5, 5, 5, 133, 389, 901, 1925, 3973, 8069, 8069, 24453, 57221, 57221, 188293, 450437, 974725, 974725, 974725, 974725, 974725, 17751941, 17751941, 84860805, 84860805, 84860805, 621731717, 621731717, 621731717, 4916699013, 4916699013
Offset: 0
Keywords
Examples
A320840(1) = 1, (-4)^0/0! = 1, so a(1) = 1. A320840(3) = 2, Sum_{i=0..1} (-4)^i/i! = -3 == 5 (mod 8), so a(3) = 5. A320840(8) = 6, Sum_{i=0..5} (-4)^i/i! = -53/15 == 133 (mod 256), so a(8) = 133. A320840(9) = 7, Sum_{i=0..6} (-4)^i/i! = 97/45 == 389 (mod 512), so a(9) = 389. A320840(10) = 9, Sum_{i=0..8} (-4)^i/i! = 167/315 == 901 (mod 1024), so a(10) = 901.
Links
- Wikipedia, p-adic number
Programs
-
PARI
a(n) = lift(sum(i=0, n-1-(n>=2), Mod((-4)^i/i!, 2^n)))
-
PARI
a(n) = lift(exp(-4 + O(2^n)));
Comments