cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321698 MM-numbers of uniform regular multiset multisystems. Numbers whose prime indices all have the same number of prime factors counted with multiplicity, and such that the product of the same prime indices is a power of a squarefree number.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 19, 23, 25, 27, 29, 31, 32, 33, 41, 43, 47, 49, 51, 53, 55, 59, 64, 67, 73, 79, 81, 83, 85, 93, 97, 101, 103, 109, 113, 121, 123, 125, 127, 128, 131, 137, 139, 149, 151, 155, 157, 161, 163, 165, 167, 169, 177, 179
Offset: 1

Views

Author

Gus Wiseman, Dec 27 2018

Keywords

Comments

A multiset multisystem is a finite multiset of finite multisets. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.
A multiset multisystem is uniform if all parts have the same size, and regular if all vertices appear the same number of times. For example, {{1,1},{2,3},{2,3}} is uniform and regular, so its MM-number 15463 belongs to the sequence.

Examples

			The sequence of all uniform regular multiset multisystems, together with their MM-numbers, begins:
   1: {}                   33: {{1},{3}}            109: {{10}}
   2: {{}}                 41: {{6}}                113: {{1,2,3}}
   3: {{1}}                43: {{1,4}}              121: {{3},{3}}
   4: {{},{}}              47: {{2,3}}              123: {{1},{6}}
   5: {{2}}                49: {{1,1},{1,1}}        125: {{2},{2},{2}}
   7: {{1,1}}              51: {{1},{4}}            127: {{11}}
   8: {{},{},{}}           53: {{1,1,1,1}}          128: {{},{},{},{},{},{}}
   9: {{1},{1}}            55: {{2},{3}}            131: {{1,1,1,1,1}}
  11: {{3}}                59: {{7}}                137: {{2,5}}
  13: {{1,2}}              64: {{},{},{},{},{},{}}  139: {{1,7}}
  15: {{1},{2}}            67: {{8}}                149: {{3,4}}
  16: {{},{},{},{}}        73: {{2,4}}              151: {{1,1,2,2}}
  17: {{4}}                79: {{1,5}}              155: {{2},{5}}
  19: {{1,1,1}}            81: {{1},{1},{1},{1}}    157: {{12}}
  23: {{2,2}}              83: {{9}}                161: {{1,1},{2,2}}
  25: {{2},{2}}            85: {{2},{4}}            163: {{1,8}}
  27: {{1},{1},{1}}        93: {{1},{5}}            165: {{1},{2},{3}}
  29: {{1,3}}              97: {{3,3}}              167: {{2,6}}
  31: {{5}}               101: {{1,6}}              169: {{1,2},{1,2}}
  32: {{},{},{},{},{}}    103: {{2,2,2}}            177: {{1},{7}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],And[SameQ@@PrimeOmega/@primeMS[#],SameQ@@Last/@FactorInteger[Times@@primeMS[#]]]&]