This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321701 #11 Dec 06 2018 19:23:15 %S A321701 5,29,31,41,43,83,101,109,127,131,139,149,151,157,163,167,173,179,181, %T A321701 191,193,199,211,223,229,233,241,251,257,277,281,283,293,313,331,349, %U A321701 383,401,409,419,421,431,433,443,457,461,463,467,491,499,509,521,541,577,587,593,599 %N A321701 Primes that are not base-5 deletable primes (written in base 10). %C A321701 A prime p is a base-b deletable prime if when written in base b it has the property that removing some digit leaves either the empty string or another deletable prime. %C A321701 Deleting a digit cannot leave any leading zeros in the new string. For example, deleting the 2 in 2003 to obtain 003 is not allowed. %C A321701 Complement of all primes and A321700. %H A321701 Robert Price, <a href="/A321701/b321701.txt">Table of n, a(n) for n = 1..31550</a> %t A321701 b = 5; d = {}; %t A321701 p = Select[Range[2, 10000], PrimeQ[#] &]; %t A321701 For[i = 1, i <= Length[p], i++, %t A321701 c = IntegerDigits[p[[i]], b]; %t A321701 If[Length[c] == 1, AppendTo[d, p[[i]]]; Continue[]]; %t A321701 For[j = 1, j <= Length[c], j++, %t A321701 t = Delete[c, j]; %t A321701 If[t[[1]] == 0, Continue[]]; %t A321701 If[MemberQ[d, FromDigits[t, b]], AppendTo[d, p[[i]]]; Break[]]]]; Complement[Table[Prime[n], {n, PrimePi[Last[d]]}], d] (* _Robert Price_, Dec 06 2018 *) %Y A321701 Cf. A080608, A080603, A096235-A096246, A321657. %K A321701 nonn,base,easy %O A321701 1,1 %A A321701 _Robert Price_, Nov 17 2018