This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321706 #13 Aug 23 2022 14:13:39 %S A321706 68428800,8099018496,511859777472,22925949056640,815521082030784, %T A321706 24494440792190400,645212095792089220,15292175926873102956, %U A321706 332150183310464271324,6702637985834037183508,126995200843857803023176,2278149500006567629947864,38954050134978747926573016 %N A321706 Number of genus 6 rooted hypermaps with n darts. %H A321706 Gheorghe Coserea, <a href="/A321706/b321706.txt">Table of n, a(n) for n = 13..113</a> %H A321706 Mednykh, A.; Nedela, R. <a href="https://doi.org/10.1007/s10958-017-3555-5">Recent progress in enumeration of hypermaps</a>, J. Math. Sci., New York 226, No. 5, 635-654 (2017) and Zap. Nauchn. Semin. POMI 446, 139-164 (2016), table 8 %H A321706 Peter Zograf, <a href="https://arxiv.org/abs/1312.2538">Enumeration of Grothendieck's Dessins and KP Hierarchy</a>, arXiv:1312.2538 [math.CO], 2014. %F A321706 G.f.: -y*(y - 1)^13*(1080091*y^24 - 32402730*y^23 + 889296813*y^22 - 11575684382*y^21 + 120636055215*y^20 - 908735922846*y^19 + 5491340556019*y^18 - 26587756725282*y^17 + 105914199493428*y^16 - 349844034215428*y^15 + 966356094916770*y^14 - 2240740995310188*y^13 + 4368032453176430*y^12 - 7149882085566108*y^11 + 9789363335577126*y^10 - 11134972065337540*y^9 + 10413235525450707*y^8 - 7887398782084338*y^7 + 4736927774219617*y^6 - 2188131419800854*y^5 + 743586620967027*y^4 - 173682661266854*y^3 + 24974862235959*y^2 - 1816988020602*y + 43470403150)/(4*(y - 2)^27*(y + 1)^21), where y=A000108(2*x). %o A321706 (PARI) %o A321706 seq(N) = { %o A321706 my(x='x+O('x^(N+2)), y=(1-sqrt(1-8*x))/(4*x)); %o A321706 Vec(-y*(y - 1)^13*(1080091*y^24 - 32402730*y^23 + 889296813*y^22 - 11575684382*y^21 + 120636055215*y^20 - 908735922846*y^19 + 5491340556019*y^18 - 26587756725282*y^17 + 105914199493428*y^16 - 349844034215428*y^15 + 966356094916770*y^14 - 2240740995310188*y^13 + 4368032453176430*y^12 - 7149882085566108*y^11 + 9789363335577126*y^10 - 11134972065337540*y^9 + 10413235525450707*y^8 - 7887398782084338*y^7 + 4736927774219617*y^6 - 2188131419800854*y^5 + 743586620967027*y^4 - 173682661266854*y^3 + 24974862235959*y^2 - 1816988020602*y + 43470403150)/(4*(y - 2)^27*(y + 1)^21)); %o A321706 }; %o A321706 seq(13) %Y A321706 Column 6 of A321710. %K A321706 nonn %O A321706 13,1 %A A321706 _Gheorghe Coserea_, Nov 17 2018