This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321710 #27 Jun 27 2025 16:28:36 %S A321710 1,3,12,1,56,15,288,165,8,1584,1611,252,9152,14805,4956,180,54912, %T A321710 131307,77992,9132,339456,1138261,1074564,268980,8064,2149888,9713835, %U A321710 13545216,6010220,579744,13891584,81968469,160174960,112868844,23235300,604800,91287552,685888171,1805010948,1877530740,684173164,57170880,608583680,5702382933,19588944336,28540603884,16497874380,2936606400,68428800,4107939840,47168678571,206254571236,404562365316,344901105444,108502598960,8099018496 %N A321710 Triangle read by rows: T(n,k) is the number of rooted hypermaps of genus k with n darts. %C A321710 Row n contains floor((n+1)/2) = A008619(n-1) terms. %H A321710 Gheorghe Coserea, <a href="/A321710/b321710.txt">Rows n = 1..42, flattened</a> %H A321710 Alain Giorgetti and Timothy R. S. Walsh, <a href="https://amc-journal.eu/index.php/amc/article/download/1115/1221">Enumeration of hypermaps of a given genus</a>, Ars Math. Contemp. 15 (2018) 225-266. %H A321710 Timothy R. Walsh, <a href="http://www.info2.uqam.ca/~walsh_t/papers/GENERATING NONISOMORPHIC.pdf">Space-efficient generation of nonisomorphic maps and hypermaps</a> %H A321710 T. R. Walsh, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Walsh/walsh3.html">Space-Efficient Generation of Nonisomorphic Maps and Hypermaps</a>, J. Int. Seq. 18 (2015) # 15.4.3. %H A321710 P. G. Zograf, <a href="https://doi.org/10.1093/imrn/rnv077">Enumeration of Grothendieck's Dessins and KP Hierarchy</a>, International Mathematics Research Notices, Volume 2015, Issue 24, 1 January 2015, 13533-13544. %H A321710 Peter Zograf, <a href="https://arxiv.org/abs/1312.2538">Enumeration of Grothendieck's Dessins and KP Hierarchy</a>, arXiv:1312.2538 [math.CO], 2014. %F A321710 A000257(n)=T(n,0), A118093(n)=T(n,1), A214817(n)=T(n,2), A214818(n)=T(n,3), A060593(n)=T(2*n+1,n)=(2*n)!/(n+1), A003319(n+1)=Sum_{k=0..floor((n-1)/2)} T(n,k). %e A321710 Triangle starts: %e A321710 n\k [0] [1] [2] [3] [4] [5] %e A321710 [1] 1; %e A321710 [2] 3; %e A321710 [3] 12, 1; %e A321710 [4] 56, 15; %e A321710 [5] 288, 165, 8; %e A321710 [6] 1584, 1611, 252; %e A321710 [7] 9152, 14805, 4956, 180; %e A321710 [8] 54912, 131307, 77992, 9132; %e A321710 [9] 339456, 1138261, 1074564, 268980, 8064; %e A321710 [10] 2149888, 9713835, 13545216, 6010220, 579744; %e A321710 [11] 13891584, 81968469, 160174960, 112868844, 23235300, 604800; %e A321710 [12] 91287552, 685888171, 1805010948, 1877530740, 684173164, 57170880; %e A321710 [13] ... %t A321710 l1[f_,n_] := Sum[(i-1)t[i]D[f,t[i-1]], {i,2,n}]; %t A321710 m1[f_,n_] := Sum[(i-1)t[j]t[i-j]D[f,t[i-1]] + j(i-j)t[i+1]D[f,t[j],t[i-j]], {i,2,n},{j,i-1}]; %t A321710 ff[1] = x^2 t[1]; %t A321710 ff[n_] := ff[n] = Simplify@(2x l1[ff[n-1],n] + m1[ff[n-1],n] + Sum[t[i+1]j(i-j)D[ff[k],t[j]]D[ff[n-1-k],t[i-j]], {i,2,n-1},{j,i-1},{k,n-2}]) / n; %t A321710 row[n_]:=Reverse[CoefficientList[n ff[n] /. {t[_]->x}, x]][[;;;;2]][[;;Quotient[n+1,2]]]; %t A321710 Table[row[n], {n,14}] (* _Andrei Zabolotskii_, Jun 27 2025, after the PARI code *) %o A321710 (PARI) %o A321710 L1(f, N) = sum(i=2, N, (i-1)*t[i]*deriv(f, t[i-1])); %o A321710 M1(f, N) = { %o A321710 sum(i=2, N, sum(j=1, i-1, (i-1)*t[j]*t[i-j]*deriv(f, t[i-1]) + %o A321710 j*(i-j)*t[i+1]*deriv(deriv(f, t[j]), t[i-j]))); %o A321710 }; %o A321710 F(N) = { %o A321710 my(u='x, v='x, f=vector(N)); t=vector(N+1, n, eval(Str("t", n))); %o A321710 f[1] = u*v*t[1]; %o A321710 for (n=2, N, f[n] = (u + v)*L1(f[n-1], n) + M1(f[n-1], n) + %o A321710 sum(i=2, n-1, t[i+1]*sum(j=1, i-1, %o A321710 j*(i-j)*sum(k=1, n-2, deriv(f[k], t[j])*deriv(f[n-1-k], t[i-j])))); %o A321710 f[n] /= n); %o A321710 f; %o A321710 }; %o A321710 seq(N) = { %o A321710 my(f=F(N), v=substvec(f, t, vector(#t, n, 'x)), %o A321710 g=vector(#v, n, Polrev(Vec(n * v[n])))); %o A321710 apply(p->Vecrev(substpol(p, 'x^2, 'x)), g); %o A321710 }; %o A321710 concat(seq(14)) %Y A321710 Columns k=0..9 give: A000257 (k=0), A118093 (k=1), A214817 (k=2), A214818 (k=3), A318104 (k=4), A321705 (k=5), A321706 (k=6), A321707 (k=7), A321708 (k=8), A321709 (k=9). %Y A321710 Row sums give A003319(n+1). %Y A321710 Cf. A008619, A060593. %K A321710 nonn,tabf %O A321710 1,2 %A A321710 _Gheorghe Coserea_, Nov 17 2018