This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321716 #31 May 07 2021 00:51:41 %S A321716 1,1,1,1,1,2,1,1,5,42,1,1,14,462,24024,1,1,42,6006,1662804,701149020, %T A321716 1,1,132,87516,140229804,396499770810,1671643033734960,1,1,429, %U A321716 1385670,13672405890,278607172289160,9490348077234178440,475073684264389879228560 %N A321716 Triangle read by rows: T(n,k) is the number of n X k Young tableaux, where 0 <= k <= n. %H A321716 Seiichi Manyama, <a href="/A321716/b321716.txt">Rows n = 0..30, flattened</a> %H A321716 Wikipedia, <a href="https://en.wikipedia.org/wiki/Hook_length_formula">Hook length formula</a> %H A321716 <a href="/index/Y#Young">Index entries for sequences related to Young tableaux.</a> %F A321716 T(n, k) = (n*k)! / (Product_{i=1..n} Product_{j=1..k} (i+j-1)). %F A321716 T(n, k) = A060854(n,k) for n,k > 0. %F A321716 T(n, n) = A039622(n). %F A321716 T(n, k) = (n*k)!*BarnesG(n+1)*BarnesG(k+1)/BarnesG(n+k+1), where BarnesG(n) = A000178. - _G. C. Greubel_, May 04 2021 %e A321716 T(4,3) = 12! / ((6*5*4)*(5*4*3)*(4*3*2)*(3*2*1)) = 462. %e A321716 Triangle begins: %e A321716 1; %e A321716 1, 1; %e A321716 1, 1, 2; %e A321716 1, 1, 5, 42; %e A321716 1, 1, 14, 462, 24024; %e A321716 1, 1, 42, 6006, 1662804, 701149020; %e A321716 1, 1, 132, 87516, 140229804, 396499770810, 1671643033734960; %t A321716 T[n_, k_]:= (n*k)!/Product[Product[i+j-1, {j,1,k}], {i,1,n}]; Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten (* _Amiram Eldar_, Nov 17 2018 *) %t A321716 T[n_, k_]:= (n*k)!*BarnesG[n+1]*BarnesG[k+1]/BarnesG[n+k+1]; %t A321716 Table[T[n, k], {n, 0, 5}, {k, 0, n}] //Flatten (* _G. C. Greubel_, May 04 2021 *) %o A321716 (Magma) %o A321716 A321716:= func< n,k | n eq 0 select 1 else Factorial(n*k)/(&*[ Round(Gamma(j+k)/Gamma(j)): j in [1..n]]) >; %o A321716 [A321716(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, May 04 2021 %o A321716 (Sage) %o A321716 def A321716(n,k): return factorial(n*k)/product( gamma(j+k)/gamma(j) for j in (1..n) ) %o A321716 flatten([[A321716(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, May 04 2021 %Y A321716 Cf. A000178, A005789, A005790, A005791, A039622, A060854 %K A321716 nonn,tabl %O A321716 0,6 %A A321716 _Seiichi Manyama_, Nov 17 2018