This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321724 #21 Mar 05 2025 22:04:46 %S A321724 1,1,1,1,1,1,2,1,1,1,1,2,3,1,1,1,1,3,5,1,1,5,1,1,3,7,1,1,1,1,4,9,12, %T A321724 11,1,1,1,1,4,15,1,1,13,31,1,1,5,43,22,1,1,1,1,5,22,103,30,1,1,1,1,6, %U A321724 106,264,42,1,1,30,383,1,1,6,56,1,1,1,1,7,45,321,2804,1731,77,1 %N A321724 Irregular triangle read by rows where T(n,k) is the number of non-isomorphic non-normal semi-magic square multiset partitions of weight n and length d = A027750(n, k). %C A321724 Also the number of nonnegative integer square matrices up to row and column permutations with sum of elements equal to n and no zero rows or columns, with row sums and column sums all equal to d. %C A321724 A non-normal semi-magic square multiset partition of weight n is a multiset partition of weight n whose part sizes and vertex degrees are all equal to d, for some d|n. %C A321724 The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices. %H A321724 Andrew Howroyd, <a href="/A321724/b321724.txt">Table of n, a(n) for n = 1..207</a> (rows 1..50) %H A321724 Wikipedia, <a href="https://en.wikipedia.org/wiki/Magic_square">Magic square</a> %F A321724 T(n,k) = A333733(d, n/d), where d = A027750(n, k). - _Andrew Howroyd_, Apr 11 2020 %e A321724 Triangle begins: %e A321724 1 %e A321724 1 1 %e A321724 1 1 %e A321724 1 2 1 %e A321724 1 1 %e A321724 1 2 3 1 %e A321724 1 1 %e A321724 1 3 5 1 %e A321724 1 5 1 %e A321724 1 3 7 1 %e A321724 Inequivalent representatives of the T(10,3) = 7 semi-magic squares (zeros not shown): %e A321724 [2 ] [2 ] [2 ] [2 ] [2 ] [11 ] [11 ] %e A321724 [ 2 ] [ 2 ] [ 2 ] [ 11 ] [ 11 ] [11 ] [1 1 ] %e A321724 [ 2 ] [ 2 ] [ 11 ] [ 11 ] [ 1 1 ] [ 11 ] [ 1 1 ] %e A321724 [ 2 ] [ 11] [ 1 1] [ 11] [ 1 1] [ 1 1] [ 1 1] %e A321724 [ 2] [ 11] [ 11] [ 11] [ 11] [ 11] [ 11] %Y A321724 Row sums are A321721. %Y A321724 Cf. A006052, A007016, A007716, A027750, A057150, A120732, A271103, A319056, A319616. %Y A321724 Cf. A321718, A321719, A321722, A333733. %K A321724 nonn,tabf %O A321724 1,7 %A A321724 _Gus Wiseman_, Nov 18 2018 %E A321724 a(28)-a(39) from _Chai Wah Wu_, Jan 16 2019 %E A321724 Terms a(40) and beyond from _Andrew Howroyd_, Apr 11 2020 %E A321724 Edited by _Peter Munn_, Mar 05 2025