A321729 Number of integer partitions of n whose Young diagram can be partitioned into vertical sections of the same sizes as the parts of the original partition.
1, 1, 1, 2, 3, 4, 6, 8, 12, 16, 22, 28, 40, 51
Offset: 0
Examples
The a(1) = 1 through a(8) = 12 partitions whose Young diagram cannot be partitioned into vertical sections of the same sizes as the parts of the original partition are the same as the half-loop-graphical partitions up to n = 8: (1) (11) (21) (22) (221) (222) (322) (332) (111) (211) (311) (321) (2221) (2222) (1111) (2111) (2211) (3211) (3221) (11111) (3111) (4111) (3311) (21111) (22111) (4211) (111111) (31111) (22211) (211111) (32111) (1111111) (41111) (221111) (311111) (2111111) (11111111) For example, the half-loop-graphs {{1},{1,2},{1,3},{2,3}} {{1},{2},{3},{1,2},{1,3}} both have degrees y = (3,2,2), so y is counted under a(7).
Crossrefs
The complement is counted by A321728.
Cf. A000110, A000258, A000700, A000701, A006052, A007016, A008277, A046682, A319056, A319616, A321730, A321737, A321738.
The following pertain to the conjecture.
The version for full loops is A339656.
A339659 is a triangle counting graphical partitions by length.
Programs
-
Mathematica
spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}]; ptnpos[y_]:=Position[Table[1,{#}]&/@y,1]; ptnverts[y_]:=Select[Join@@Table[Subsets[ptnpos[y],{k}],{k,Reverse[Union[y]]}],UnsameQ@@First/@#&]; Table[Length[Select[IntegerPartitions[n],Length[Select[spsu[ptnverts[#],ptnpos[#]],Function[p,Sort[Length/@p]==Sort[#]]]]>0&]],{n,8}]
Comments