cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321730 Number of ways to partition the Young diagram of an integer partition of n into vertical sections of the same sizes as the parts of the original partition.

This page as a plain text file.
%I A321730 #5 Nov 19 2018 07:21:48
%S A321730 1,1,1,3,8,23,79,303,1294,5934,29385,156232,884893
%N A321730 Number of ways to partition the Young diagram of an integer partition of n into vertical sections of the same sizes as the parts of the original partition.
%C A321730 A vertical section is a partial Young diagram with at most one square in each row. For example, a suitable partition (shown as a coloring by positive integers) of the Young diagram of (322) is:
%C A321730   1 2 3
%C A321730   1 2
%C A321730   2 3
%e A321730 The a(5) = 23 partitions of Young diagrams of integer partitions of 5 into vertical sections of the same sizes as the parts of the original partition, shown as colorings by positive integers:
%e A321730   1 2 3   1 2 3   1 2 3
%e A321730   1       2       3
%e A321730   1       2       3
%e A321730 .
%e A321730   1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2
%e A321730   1 2   1 3   1 3   2 1   3 1   3 1   2 3   3 2   2 3   3 2
%e A321730   3     2     3     3     2     3     1     1     3     3
%e A321730 .
%e A321730   1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2
%e A321730   1     3     3     2     3     3     3     3     3
%e A321730   3     1     4     3     2     4     3     4     4
%e A321730   4     4     1     4     4     2     4     3     4
%e A321730 .
%e A321730   1
%e A321730   2
%e A321730   3
%e A321730   4
%e A321730   5
%t A321730 spsu[_,{}]:={{}};spsu[foo_,set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,___}];
%t A321730 ptnpos[y_]:=Position[Table[1,{#}]&/@y,1];
%t A321730 ptnverts[y_]:=Select[Join@@Table[Subsets[ptnpos[y],{k}],{k,Reverse[Union[y]]}],UnsameQ@@First/@#&];
%t A321730 Table[Sum[Length[Select[spsu[ptnverts[y],ptnpos[y]],Function[p,Sort[Length/@p]==Sort[y]]]],{y,IntegerPartitions[n]}],{n,5}]
%Y A321730 Cf. A000110, A000258, A000700, A000701, A006052, A007016, A008277, A321728, A321729, A321731, A321737, A321738.
%K A321730 nonn,more
%O A321730 0,4
%A A321730 _Gus Wiseman_, Nov 18 2018