This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321731 #5 Nov 19 2018 07:21:55 %S A321731 1,1,0,1,0,2,0,1,2,0,0,5,0,0,0,1,0,10,0,3,0,0,0,9,0,0,8,0,0,12,0,1,0, %T A321731 0,0,34,0,0,0,10,0,0,0,0,24,0,0,14,0,0,0,0,0,68,0,4,0,0,0,78,0,0,0,1, %U A321731 0,0,0,0,0,0,0,86,0,0,36,0,0,0,0,22,60,0,0 %N A321731 Number of ways to partition the Young diagram of the integer partition with Heinz number n into vertical sections of the same sizes as the parts of the original partition. %C A321731 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %C A321731 A vertical section is a partial Young diagram with at most one square in each row. For example, a suitable partition (shown as a coloring by positive integers) of the Young diagram of (322) is: %C A321731 1 2 3 %C A321731 1 2 %C A321731 2 3 %e A321731 The a(30) = 12 partitions of the Young diagram of (321) into vertical sections of sizes (321), shown as colorings by positive integers: %e A321731 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 %e A321731 1 2 1 3 2 1 3 1 1 2 1 3 %e A321731 1 1 1 1 2 3 %e A321731 . %e A321731 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 %e A321731 2 1 3 1 2 3 3 2 2 3 3 2 %e A321731 2 3 2 2 3 3 %t A321731 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A321731 spsu[_,{}]:={{}};spsu[foo_,set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,___}]; %t A321731 ptnpos[y_]:=Position[Table[1,{#}]&/@y,1]; %t A321731 ptnverts[y_]:=Select[Join@@Table[Subsets[ptnpos[y],{k}],{k,Reverse[Union[y]]}],UnsameQ@@First/@#&]; %t A321731 Table[With[{y=Reverse[primeMS[n]]},Length[Select[spsu[ptnverts[y],ptnpos[y]],Function[p,Sort[Length/@p]==Sort[y]]]]],{n,30}] %Y A321731 Cf. A000110, A000258, A000700, A000701, A056239, A122111, A321649, A321728, A321729, A321730, A321737, A321738. %K A321731 nonn %O A321731 1,6 %A A321731 _Gus Wiseman_, Nov 18 2018