A321734 Number of nonnegative integer square matrices with sum of entries equal to n, no zero rows or columns, weakly decreasing row and column sums, and the same row sums as column sums.
1, 1, 3, 9, 37, 177, 1054, 7237, 57447, 512664, 5101453, 55870885, 668438484, 8667987140, 121123281293, 1814038728900, 28988885491655, 492308367375189, 8854101716492463, 168108959387012804, 3360171602215686668, 70527588239926854144, 1550926052235372201700
Offset: 0
Keywords
Examples
The a(3) = 9 matrices: [3] . [2 0] [1 1] [0 1] [1 0] . [1 0 0] [1 0 0] [0 1 0] [0 1 0] [0 0 1] [0 0 1] [0 1 0] [0 0 1] [1 0 0] [0 0 1] [1 0 0] [0 1 0] [0 0 1] [0 1 0] [0 0 1] [1 0 0] [0 1 0] [1 0 0]
Crossrefs
Programs
-
Mathematica
prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}]; multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]]; Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#]==Union[Last/@#],OrderedQ[Total/@prs2mat[#]],OrderedQ[Total/@Transpose[prs2mat[#]]],Total/@prs2mat[#]==Total/@Transpose[prs2mat[#]]]&]],{n,5}]
Formula
Let c(y) be the coefficient of m(y) in h(y), where m is monomial symmetric functions and h is homogeneous symmetric functions. Then a(n) = Sum_{|y| = n} c(y).
Extensions
a(11) - a(22) from Ludovic Schwob, Sep 29 2023