A321735 Number of (0,1)-matrices with sum of entries equal to n, no zero rows or columns, weakly decreasing row and column sums, and the same row sums as column sums.
1, 1, 2, 7, 30, 153, 939, 6653, 53743, 486576
Offset: 0
Examples
The a(3) = 7 matrices: [1 1] [1 0] . [1 0 0] [1 0 0] [0 1 0] [0 1 0] [0 0 1] [0 0 1] [0 1 0] [0 0 1] [1 0 0] [0 0 1] [1 0 0] [0 1 0] [0 0 1] [0 1 0] [0 0 1] [1 0 0] [0 1 0] [1 0 0]
Crossrefs
Programs
-
Mathematica
prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}]; Table[Length[Select[Subsets[Tuples[Range[n],2],{n}],And[Union[First/@#]==Range[Max@@First/@#]==Union[Last/@#],OrderedQ[Total/@prs2mat[#]],OrderedQ[Total/@Transpose[prs2mat[#]]],Total/@prs2mat[#]==Total/@Transpose[prs2mat[#]]]&]],{n,5}]
Formula
Let c(y) be the coefficient of m(y) in e(y), where m is monomial symmetric functions and e is elementary symmetric functions. Then a(n) = Sum_{|y| = n} c(y).