A321737 Number of ways to partition the Young diagram of an integer partition of n into vertical sections.
1, 1, 3, 9, 37, 152, 780, 3965, 23460, 141471, 944217, 6445643, 48075092, 364921557, 2974423953, 24847873439, 219611194148, 1987556951714, 18930298888792, 184244039718755, 1874490999743203, 19510832177784098, 210941659716920257, 2331530519337226199, 26692555830628617358
Offset: 0
Keywords
Examples
The a(4) = 37 partitions into vertical sections of integer partitions of 4: 1 2 3 4 . 1 2 3 1 2 3 1 2 3 1 2 3 4 3 2 1 . 1 2 1 2 1 2 1 2 1 2 1 2 1 2 3 4 2 3 3 2 1 3 1 2 3 1 2 1 . 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 3 3 2 3 2 1 1 3 2 1 4 3 3 2 2 3 2 1 1 1 . 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 1 1 2 2 2 2 1 1 2 1 3 3 2 3 2 2 2 1 1 3 2 1 2 1 1 4 3 3 2 2 3 2 3 2 1 1 2 1 1 1
Crossrefs
Programs
-
Mathematica
spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}]; ptnpos[y_]:=Position[Table[1,{#}]&/@y,1]; ptnverts[y_]:=Select[Rest[Subsets[ptnpos[y]]],UnsameQ@@First/@#&]; Table[Sum[Length[spsu[ptnverts[y],ptnpos[y]]],{y,IntegerPartitions[n]}],{n,6}]
Extensions
a(11)-a(24) from Ludovic Schwob, Aug 28 2023
Comments