This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321738 #6 Nov 20 2018 12:21:04 %S A321738 1,1,1,2,1,3,1,5,7,4,1,10,1,5,13,15,1,27,1,17,21,6,1,37,34,7,87,26,1, %T A321738 60,1,52,31,8,73,114,1,9,43,77,1,115,1,37,235,10,1,151,209,175,57,50, %U A321738 1,409,136,141,73,11,1,295,1,12,543,203,229,198,1,65,91 %N A321738 Number of ways to partition the Young diagram of the integer partition with Heinz number n into vertical sections. %C A321738 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %C A321738 A vertical section is a partial Young diagram with at most one square in each row. For example, a partition (shown as a coloring by positive integers) into vertical sections of the Young diagram of (322) is: %C A321738 1 2 3 %C A321738 1 2 %C A321738 2 3 %e A321738 The a(12) = 10 partitions of the Young diagram of (211) into vertical sections: %e A321738 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 %e A321738 3 3 2 3 2 1 1 3 2 1 %e A321738 4 3 3 2 2 3 2 1 1 1 %t A321738 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A321738 spsu[_,{}]:={{}};spsu[foo_,set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,___}]; %t A321738 ptnpos[y_]:=Position[Table[1,{#}]&/@y,1]; %t A321738 ptnverts[y_]:=Select[Rest[Subsets[ptnpos[y]]],UnsameQ@@First/@#&]; %t A321738 Table[With[{y=Reverse[primeMS[n]]},Length[spsu[ptnverts[y],ptnpos[y]]]],{n,30}] %Y A321738 Cf. A000110, A000700, A000701, A006052, A056239, A122111, A320328, A321719-A321731, A321737, A321854. %K A321738 nonn,more %O A321738 1,4 %A A321738 _Gus Wiseman_, Nov 19 2018