cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321738 Number of ways to partition the Young diagram of the integer partition with Heinz number n into vertical sections.

This page as a plain text file.
%I A321738 #6 Nov 20 2018 12:21:04
%S A321738 1,1,1,2,1,3,1,5,7,4,1,10,1,5,13,15,1,27,1,17,21,6,1,37,34,7,87,26,1,
%T A321738 60,1,52,31,8,73,114,1,9,43,77,1,115,1,37,235,10,1,151,209,175,57,50,
%U A321738 1,409,136,141,73,11,1,295,1,12,543,203,229,198,1,65,91
%N A321738 Number of ways to partition the Young diagram of the integer partition with Heinz number n into vertical sections.
%C A321738 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
%C A321738 A vertical section is a partial Young diagram with at most one square in each row. For example, a partition (shown as a coloring by positive integers) into vertical sections of the Young diagram of (322) is:
%C A321738   1 2 3
%C A321738   1 2
%C A321738   2 3
%e A321738 The a(12) = 10 partitions of the Young diagram of (211) into vertical sections:
%e A321738   1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2
%e A321738   3     3     2     3     2     1     1     3     2     1
%e A321738   4     3     3     2     2     3     2     1     1     1
%t A321738 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A321738 spsu[_,{}]:={{}};spsu[foo_,set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,___}];
%t A321738 ptnpos[y_]:=Position[Table[1,{#}]&/@y,1];
%t A321738 ptnverts[y_]:=Select[Rest[Subsets[ptnpos[y]]],UnsameQ@@First/@#&];
%t A321738 Table[With[{y=Reverse[primeMS[n]]},Length[spsu[ptnverts[y],ptnpos[y]]]],{n,30}]
%Y A321738 Cf. A000110, A000700, A000701, A006052, A056239, A122111, A320328, A321719-A321731, A321737, A321854.
%K A321738 nonn,more
%O A321738 1,4
%A A321738 _Gus Wiseman_, Nov 19 2018