This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321739 #6 Nov 20 2018 12:21:11 %S A321739 1,1,1,2,4,6,12,21,46,94,208 %N A321739 Number of non-isomorphic weight-n set multipartitions (multisets of sets) whose part-sizes are also their vertex-degrees. %C A321739 Also the number of (0,1) square matrices up to row and column permutations with n ones and no zero rows or columns, with the same multiset of row sums as of column sums. %C A321739 The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices. %e A321739 Non-isomorphic representatives of the a(1) = 1 through a(6) = 12 set multipartitions: %e A321739 {1} {1}{2} {2}{12} {12}{12} {1}{23}{23} {12}{13}{23} %e A321739 {1}{2}{3} {1}{1}{23} {2}{13}{23} {3}{23}{123} %e A321739 {1}{3}{23} {3}{3}{123} {1}{1}{1}{234} %e A321739 {1}{2}{3}{4} {1}{2}{2}{34} {1}{1}{24}{34} %e A321739 {1}{2}{4}{34} {1}{2}{34}{34} %e A321739 {1}{2}{3}{4}{5} {1}{3}{24}{34} %e A321739 {1}{4}{4}{234} %e A321739 {2}{4}{12}{34} %e A321739 {3}{4}{12}{34} %e A321739 {1}{2}{3}{3}{45} %e A321739 {1}{2}{3}{5}{45} %e A321739 {1}{2}{3}{4}{5}{6} %Y A321739 Cf. A000700, A049311, A057151, A104602, A319056, A320451, A321719, A321721, A321723, A321732, A321734, A321735, A321736, A321854. %K A321739 nonn,more %O A321739 0,4 %A A321739 _Gus Wiseman_, Nov 19 2018