This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321742 #7 Nov 20 2018 12:21:19 %S A321742 1,1,0,1,1,2,0,0,1,0,1,3,0,0,0,0,1,1,3,6,0,1,0,2,6,0,0,0,1,4,0,0,0,0, %T A321742 0,0,1,0,2,1,5,12,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,5,0,0,0,1,0,3,10, %U A321742 1,6,4,12,24,0,0,0,0,0,0,0,0,0,0,0,0,0,0 %N A321742 Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of m(v) in e(u), where H is Heinz number, m is monomial symmetric functions, and e is elementary symmetric functions. %C A321742 Row n has length A000041(A056239(n)). %C A321742 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %H A321742 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a> %e A321742 Triangle begins: %e A321742 1 %e A321742 1 %e A321742 0 1 %e A321742 1 2 %e A321742 0 0 1 %e A321742 0 1 3 %e A321742 0 0 0 0 1 %e A321742 1 3 6 %e A321742 0 1 0 2 6 %e A321742 0 0 0 1 4 %e A321742 0 0 0 0 0 0 1 %e A321742 0 2 1 5 12 %e A321742 0 0 0 0 0 0 0 0 0 0 1 %e A321742 0 0 0 0 0 1 5 %e A321742 0 0 0 1 0 3 10 %e A321742 1 6 4 12 24 %e A321742 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 %e A321742 0 0 1 5 2 12 30 %e A321742 For example, row 12 gives: e(211) = 2m(22) + m(31) + 5m(211) + 12m(1111). %t A321742 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A321742 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A321742 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; %t A321742 nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]]; %t A321742 Table[Table[Sum[Times@@Factorial/@Length/@Split[Sort[Length/@mtn,Greater]]/Times@@Factorial/@Length/@Split[mtn],{mtn,Select[mps[nrmptn[n]],And[And@@UnsameQ@@@#,Sort[Length/@#]==primeMS[k]]&]}],{k,Sort[Times@@Prime/@#&/@IntegerPartitions[Total[primeMS[n]]]]}],{n,18}] %Y A321742 Row sums are A321743. %Y A321742 Cf. A008480, A049311, A056239, A116540, A124794, A124795, A300121, A319193, A321738, A321742-A321765, A321854. %K A321742 nonn,tabf %O A321742 1,6 %A A321742 _Gus Wiseman_, Nov 19 2018