cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321743 Sum of coefficients of monomial symmetric functions in the elementary symmetric function of the integer partition with Heinz number n.

This page as a plain text file.
%I A321743 #8 Nov 20 2018 12:21:25
%S A321743 1,1,1,3,1,4,1,10,9,5,1,20,1,6,14,47,1,50,1,30,20,7,1,110,29,8,157,42,
%T A321743 1,97,1,246,27,9,49,338,1,10,35,206,1,159,1,56,353,11,1,732,99,224,44,
%U A321743 72,1,1184,76,332,54,12,1,743,1,13,677,1602,111,242,1,90
%N A321743 Sum of coefficients of monomial symmetric functions in the elementary symmetric function of the integer partition with Heinz number n.
%C A321743 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
%C A321743 Also the number of size-preserving permutations of set multipartitions (multisets of sets) of a multiset (such as row n of A305936) whose multiplicities are the prime indices of n.
%e A321743 The sum of coefficients of e(211) = 2m(22) + m(31) + 5m(211) + 12m(1111) is a(12) = 20.
%e A321743 The a(2) = 1 through a(9) = 9 size-preserving permutations of set multipartitions:
%e A321743   {1} {1}{1} {12}   {1}{1}{1} {1}{12}   {1}{1}{1}{1} {123}     {12}{12}
%e A321743              {1}{2}           {1}{1}{2}              {1}{23}   {1}{2}{12}
%e A321743              {2}{1}           {1}{2}{1}              {2}{13}   {2}{1}{12}
%e A321743                               {2}{1}{1}              {3}{12}   {1}{1}{2}{2}
%e A321743                                                      {1}{2}{3} {1}{2}{1}{2}
%e A321743                                                      {1}{3}{2} {1}{2}{2}{1}
%e A321743                                                      {2}{1}{3} {2}{1}{1}{2}
%e A321743                                                      {2}{3}{1} {2}{1}{2}{1}
%e A321743                                                      {3}{1}{2} {2}{2}{1}{1}
%e A321743                                                      {3}{2}{1}
%t A321743 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];
%t A321743 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
%t A321743 nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
%t A321743 Table[Sum[Times@@Factorial/@Length/@Split[Sort[Length/@mtn,Greater]]/Times@@Factorial/@Length/@Split[mtn],{mtn,Select[mps[nrmptn[n]],And@@UnsameQ@@@#&]}],{n,30}]
%Y A321743 Row sums of A321742.
%Y A321743 Cf. A005651, A008480, A049311, A056239, A116540, A124794, A124795, A181821, A296150, A318360, A319193, A319225, A319226, A321738, A321742-A321765.
%K A321743 nonn
%O A321743 1,4
%A A321743 _Gus Wiseman_, Nov 19 2018