This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321744 #6 Nov 20 2018 12:21:32 %S A321744 1,1,1,1,1,2,1,1,1,1,2,3,1,1,1,1,1,1,3,6,1,3,2,4,6,1,2,2,3,4,1,1,1,1, %T A321744 1,1,1,1,4,3,7,12,1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,4,5,1,2,3,5,4,7,10, %U A321744 1,6,4,12,24,1,1,1,1,1,1,1,1,1,1,1,1,1,1 %N A321744 Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of m(v) in h(u), where H is Heinz number, m is monomial symmetric functions, and h is homogeneous symmetric functions. %C A321744 Row n has length A000041(A056239(n)). %C A321744 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %C A321744 Also the number of size-preserving permutations of type-v multiset partitions of a multiset whose multiplicities are the parts of u. %C A321744 Also the coefficient of f(v) in e(u), where e is elementary symmetric functions and f is forgotten symmetric functions. %H A321744 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a> %e A321744 Triangle begins: %e A321744 1 %e A321744 1 %e A321744 1 1 %e A321744 1 2 %e A321744 1 1 1 %e A321744 1 2 3 %e A321744 1 1 1 1 1 %e A321744 1 3 6 %e A321744 1 3 2 4 6 %e A321744 1 2 2 3 4 %e A321744 1 1 1 1 1 1 1 %e A321744 1 4 3 7 12 %e A321744 1 1 1 1 1 1 1 1 1 1 1 %e A321744 1 2 2 3 3 4 5 %e A321744 1 2 3 5 4 7 10 %e A321744 1 6 4 12 24 %e A321744 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 %e A321744 1 3 5 11 8 18 30 %e A321744 For example, row 12 gives: h(211) = m(4) + 4m(22) + 3m(31) + 7m(211) + 12m(1111). %t A321744 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A321744 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A321744 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; %t A321744 nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]]; %t A321744 Table[Table[Sum[Times@@Factorial/@Length/@Split[Sort[Length/@mtn,Greater]]/Times@@Factorial/@Length/@Split[mtn],{mtn,Select[mps[nrmptn[n]],Sort[Length/@#]==primeMS[k]&]}],{k,Sort[Times@@Prime/@#&/@IntegerPartitions[Total[primeMS[n]]]]}],{n,18}] %Y A321744 Row sums are A321745. %Y A321744 Cf. A005651, A007716, A008480, A056239, A124794, A124795, A255906, A300121, A321742-A321765, A321854. %K A321744 nonn,tabf %O A321744 1,6 %A A321744 _Gus Wiseman_, Nov 19 2018