cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321744 Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of m(v) in h(u), where H is Heinz number, m is monomial symmetric functions, and h is homogeneous symmetric functions.

This page as a plain text file.
%I A321744 #6 Nov 20 2018 12:21:32
%S A321744 1,1,1,1,1,2,1,1,1,1,2,3,1,1,1,1,1,1,3,6,1,3,2,4,6,1,2,2,3,4,1,1,1,1,
%T A321744 1,1,1,1,4,3,7,12,1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,4,5,1,2,3,5,4,7,10,
%U A321744 1,6,4,12,24,1,1,1,1,1,1,1,1,1,1,1,1,1,1
%N A321744 Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of m(v) in h(u), where H is Heinz number, m is monomial symmetric functions, and h is homogeneous symmetric functions.
%C A321744 Row n has length A000041(A056239(n)).
%C A321744 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
%C A321744 Also the number of size-preserving permutations of type-v multiset partitions of a multiset whose multiplicities are the parts of u.
%C A321744 Also the coefficient of f(v) in e(u), where e is elementary symmetric functions and f is forgotten symmetric functions.
%H A321744 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a>
%e A321744 Triangle begins:
%e A321744    1
%e A321744    1
%e A321744    1   1
%e A321744    1   2
%e A321744    1   1   1
%e A321744    1   2   3
%e A321744    1   1   1   1   1
%e A321744    1   3   6
%e A321744    1   3   2   4   6
%e A321744    1   2   2   3   4
%e A321744    1   1   1   1   1   1   1
%e A321744    1   4   3   7  12
%e A321744    1   1   1   1   1   1   1   1   1   1   1
%e A321744    1   2   2   3   3   4   5
%e A321744    1   2   3   5   4   7  10
%e A321744    1   6   4  12  24
%e A321744    1   1   1   1   1   1   1   1   1   1   1   1   1   1   1
%e A321744    1   3   5  11   8  18  30
%e A321744 For example, row 12 gives: h(211) = m(4) + 4m(22) + 3m(31) + 7m(211) + 12m(1111).
%t A321744 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A321744 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];
%t A321744 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
%t A321744 nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
%t A321744 Table[Table[Sum[Times@@Factorial/@Length/@Split[Sort[Length/@mtn,Greater]]/Times@@Factorial/@Length/@Split[mtn],{mtn,Select[mps[nrmptn[n]],Sort[Length/@#]==primeMS[k]&]}],{k,Sort[Times@@Prime/@#&/@IntegerPartitions[Total[primeMS[n]]]]}],{n,18}]
%Y A321744 Row sums are A321745.
%Y A321744 Cf. A005651, A007716, A008480, A056239, A124794, A124795, A255906, A300121, A321742-A321765, A321854.
%K A321744 nonn,tabf
%O A321744 1,6
%A A321744 _Gus Wiseman_, Nov 19 2018