cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321745 Sum of coefficients of monomial symmetric functions in the homogeneous symmetric function of the integer partition with Heinz number n.

This page as a plain text file.
%I A321745 #5 Nov 20 2018 12:21:39
%S A321745 1,1,2,3,3,6,5,10,16,12,7,27,11,20,32,47,15,76,22,56,65,35,30,136,79,
%T A321745 54,263,114,42,191,56,246,113,86,160,476,77,128,199,344
%N A321745 Sum of coefficients of monomial symmetric functions in the homogeneous symmetric function of the integer partition with Heinz number n.
%C A321745 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
%C A321745 Also the number of size-preserving permutations of multiset partitions of a multiset (such as row n of A305936) whose multiplicities are the prime indices of n.
%H A321745 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a>
%e A321745 The sum of coefficients of h(211) = m(4) + 4m(22) + 3m(31) + 7m(211) + 12m(1111) is a(12) = 27.
%e A321745 The a(3) = 2 through a(9) = 16 size-preserving permutations of multiset partitions:
%e A321745   {11}    {12}    {111}      {112}      {1111}        {123}      {1122}
%e A321745   {1}{1}  {1}{2}  {1}{11}    {1}{12}    {1}{111}      {1}{23}    {1}{122}
%e A321745           {2}{1}  {1}{1}{1}  {2}{11}    {11}{11}      {2}{13}    {11}{22}
%e A321745                              {1}{1}{2}  {1}{1}{11}    {3}{12}    {12}{12}
%e A321745                              {1}{2}{1}  {1}{1}{1}{1}  {1}{2}{3}  {2}{112}
%e A321745                              {2}{1}{1}                {1}{3}{2}  {22}{11}
%e A321745                                                       {2}{1}{3}  {1}{1}{22}
%e A321745                                                       {2}{3}{1}  {1}{2}{12}
%e A321745                                                       {3}{1}{2}  {2}{1}{12}
%e A321745                                                       {3}{2}{1}  {2}{2}{11}
%e A321745                                                                  {1}{1}{2}{2}
%e A321745                                                                  {1}{2}{1}{2}
%e A321745                                                                  {1}{2}{2}{1}
%e A321745                                                                  {2}{1}{1}{2}
%e A321745                                                                  {2}{1}{2}{1}
%e A321745                                                                  {2}{2}{1}{1}
%t A321745 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];
%t A321745 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
%t A321745 nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
%t A321745 Table[Sum[Times@@Factorial/@Length/@Split[Sort[Length/@mtn,Greater]]/Times@@Factorial/@Length/@Split[mtn],{mtn,mps[nrmptn[n]]}],{n,30}]
%Y A321745 Row sums of A321744.
%Y A321745 Cf. A005651, A007716, A008480, A056239, A124794, A124795, A181821, A255906, A296150, A318284, A319193, A319225, A319226, A321742-A321765.
%K A321745 nonn,more
%O A321745 1,3
%A A321745 _Gus Wiseman_, Nov 19 2018