This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321745 #5 Nov 20 2018 12:21:39 %S A321745 1,1,2,3,3,6,5,10,16,12,7,27,11,20,32,47,15,76,22,56,65,35,30,136,79, %T A321745 54,263,114,42,191,56,246,113,86,160,476,77,128,199,344 %N A321745 Sum of coefficients of monomial symmetric functions in the homogeneous symmetric function of the integer partition with Heinz number n. %C A321745 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %C A321745 Also the number of size-preserving permutations of multiset partitions of a multiset (such as row n of A305936) whose multiplicities are the prime indices of n. %H A321745 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a> %e A321745 The sum of coefficients of h(211) = m(4) + 4m(22) + 3m(31) + 7m(211) + 12m(1111) is a(12) = 27. %e A321745 The a(3) = 2 through a(9) = 16 size-preserving permutations of multiset partitions: %e A321745 {11} {12} {111} {112} {1111} {123} {1122} %e A321745 {1}{1} {1}{2} {1}{11} {1}{12} {1}{111} {1}{23} {1}{122} %e A321745 {2}{1} {1}{1}{1} {2}{11} {11}{11} {2}{13} {11}{22} %e A321745 {1}{1}{2} {1}{1}{11} {3}{12} {12}{12} %e A321745 {1}{2}{1} {1}{1}{1}{1} {1}{2}{3} {2}{112} %e A321745 {2}{1}{1} {1}{3}{2} {22}{11} %e A321745 {2}{1}{3} {1}{1}{22} %e A321745 {2}{3}{1} {1}{2}{12} %e A321745 {3}{1}{2} {2}{1}{12} %e A321745 {3}{2}{1} {2}{2}{11} %e A321745 {1}{1}{2}{2} %e A321745 {1}{2}{1}{2} %e A321745 {1}{2}{2}{1} %e A321745 {2}{1}{1}{2} %e A321745 {2}{1}{2}{1} %e A321745 {2}{2}{1}{1} %t A321745 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A321745 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; %t A321745 nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]]; %t A321745 Table[Sum[Times@@Factorial/@Length/@Split[Sort[Length/@mtn,Greater]]/Times@@Factorial/@Length/@Split[mtn],{mtn,mps[nrmptn[n]]}],{n,30}] %Y A321745 Row sums of A321744. %Y A321745 Cf. A005651, A007716, A008480, A056239, A124794, A124795, A181821, A255906, A296150, A318284, A319193, A319225, A319226, A321742-A321765. %K A321745 nonn,more %O A321745 1,3 %A A321745 _Gus Wiseman_, Nov 19 2018