This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321746 #5 Nov 20 2018 12:21:47 %S A321746 1,1,-2,1,1,0,3,-3,1,-3,1,0,-4,2,4,-4,1,1,0,0,2,1,-2,0,0,4,-2,-1,1,0, %T A321746 5,-5,-5,5,5,-5,1,-4,0,1,0,0,-6,6,6,3,-2,-6,-12,9,6,-6,1,-5,1,5,-3,-1, %U A321746 1,0,-5,5,-1,1,-2,0,0,1,0,0,0,0,7,-7,-7,-7,14,7 %N A321746 Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of e(v) in m(u), where H is Heinz number, m is monomial symmetric functions, and e is elementary symmetric functions. %C A321746 Row n has length A000041(A056239(n)). %C A321746 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %C A321746 Also the coefficient of h(v) in f(u), where h is homogeneous symmetric functions and f is forgotten symmetric functions. %H A321746 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a> %e A321746 Triangle begins: %e A321746 1 %e A321746 1 %e A321746 -2 1 %e A321746 1 0 %e A321746 3 -3 1 %e A321746 -3 1 0 %e A321746 -4 2 4 -4 1 %e A321746 1 0 0 %e A321746 2 1 -2 0 0 %e A321746 4 -2 -1 1 0 %e A321746 5 -5 -5 5 5 -5 1 %e A321746 -4 0 1 0 0 %e A321746 -6 6 6 3 -2 -6 -12 9 6 -6 1 %e A321746 -5 1 5 -3 -1 1 0 %e A321746 -5 5 -1 1 -2 0 0 %e A321746 1 0 0 0 0 %e A321746 7 -7 -7 -7 14 7 7 7 -7 -7 -21 14 7 -7 1 %e A321746 5 -3 1 0 0 0 0 %e A321746 For example, row 10 gives: m(31) = 4e(4) - 2e(22) - e(31) + e(211). %Y A321746 Row sums are A321747. %Y A321746 Cf. A005651, A008480, A048994, A056239, A124794, A124795, A321738, A321742-A321765, A321854. %K A321746 sign,tabf %O A321746 1,3 %A A321746 _Gus Wiseman_, Nov 19 2018