cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321747 Sum of coefficients of elementary symmetric functions in the monomial symmetric function of the integer partition with Heinz number n.

This page as a plain text file.
%I A321747 #5 Nov 20 2018 12:21:53
%S A321747 1,1,-1,1,1,-2,-1,1,1,2,1,-3,-1,-2,-2,1,1,3,-1,3,2,2,1,-4,1,-2,-1,-3,
%T A321747 -1,-6,1,1,-2,2,-2,6,-1,-2,2,4,1,6,-1,3,3,2,1,-5,1,3,-2,-3,-1,-4,2,-4,
%U A321747 2,-2,1,-12,-1,2,-3,1,-2,-6,1,3,-2,-6,-1,10,1,-2
%N A321747 Sum of coefficients of elementary symmetric functions in the monomial symmetric function of the integer partition with Heinz number n.
%C A321747 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
%H A321747 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a>
%F A321747 a(n) = (-1)^(A056239(n) - A001222(n)) * A008480(n).
%e A321747 The sum of coefficients of m(2211) = 9e(6) + e(42) - 4e(51) is a(36) = 6.
%t A321747 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A321747 Table[(-1)^(Total[primeMS[n]]-PrimeOmega[n])*Length[Permutations[primeMS[n]]],{n,50}]
%Y A321747 Row sums of A321746. An unsigned version is A008480.
%Y A321747 Cf. A005651, A056239, A124794, A124795, A296150, A321738, A321742-A321765.
%K A321747 sign
%O A321747 1,6
%A A321747 _Gus Wiseman_, Nov 19 2018