This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321747 #5 Nov 20 2018 12:21:53 %S A321747 1,1,-1,1,1,-2,-1,1,1,2,1,-3,-1,-2,-2,1,1,3,-1,3,2,2,1,-4,1,-2,-1,-3, %T A321747 -1,-6,1,1,-2,2,-2,6,-1,-2,2,4,1,6,-1,3,3,2,1,-5,1,3,-2,-3,-1,-4,2,-4, %U A321747 2,-2,1,-12,-1,2,-3,1,-2,-6,1,3,-2,-6,-1,10,1,-2 %N A321747 Sum of coefficients of elementary symmetric functions in the monomial symmetric function of the integer partition with Heinz number n. %C A321747 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %H A321747 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a> %F A321747 a(n) = (-1)^(A056239(n) - A001222(n)) * A008480(n). %e A321747 The sum of coefficients of m(2211) = 9e(6) + e(42) - 4e(51) is a(36) = 6. %t A321747 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A321747 Table[(-1)^(Total[primeMS[n]]-PrimeOmega[n])*Length[Permutations[primeMS[n]]],{n,50}] %Y A321747 Row sums of A321746. An unsigned version is A008480. %Y A321747 Cf. A005651, A056239, A124794, A124795, A296150, A321738, A321742-A321765. %K A321747 sign %O A321747 1,6 %A A321747 _Gus Wiseman_, Nov 19 2018