cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321748 Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of h(v) in m(u), where H is Heinz number, m is monomial symmetric functions, and h is homogeneous symmetric functions.

This page as a plain text file.
%I A321748 #4 Nov 20 2018 16:30:14
%S A321748 1,1,2,-1,-1,1,3,-3,1,-3,5,-2,4,-2,-4,4,-1,1,-2,1,-2,3,2,-4,1,-4,2,7,
%T A321748 -7,2,5,-5,-5,5,5,-5,1,4,-4,-7,10,-3,6,-6,-6,-3,2,6,12,-9,-6,6,-1,-5,
%U A321748 9,5,-7,-9,9,-2,-5,5,11,-11,-8,10,-2,-1,1,2,-3,1,7
%N A321748 Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of h(v) in m(u), where H is Heinz number, m is monomial symmetric functions, and h is homogeneous symmetric functions.
%C A321748 Row n has length A000041(A056239(n)).
%C A321748 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
%C A321748 Also the coefficient of e(v) in f(u), where e is elementary symmetric functions and f is forgotten symmetric functions.
%H A321748 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a>
%e A321748 Triangle begins:
%e A321748    1
%e A321748    1
%e A321748    2  -1
%e A321748   -1   1
%e A321748    3  -3   1
%e A321748   -3   5  -2
%e A321748    4  -2  -4   4  -1
%e A321748    1  -2   1
%e A321748   -2   3   2  -4   1
%e A321748   -4   2   7  -7   2
%e A321748    5  -5  -5   5   5  -5   1
%e A321748    4  -4  -7  10  -3
%e A321748    6  -6  -6  -3   2   6  12  -9  -6   6  -1
%e A321748   -5   9   5  -7  -9   9  -2
%e A321748   -5   5  11 -11  -8  10  -2
%e A321748   -1   1   2  -3   1
%e A321748    7  -7  -7  -7  14   7   7   7  -7  -7 -21  14   7  -7   1
%e A321748    5  -7 -11  14  10 -14   3
%e A321748 For example, row 10 gives: m(31) = -4h(4) + 2h(22) + 7h(31) - 7h(211) + 2h(1111).
%Y A321748 Row sums are A080339.
%Y A321748 Cf. A005651, A008480, A048994, A056239, A124794, A124795, A135278, A300121, A319191, A319193, A321738, A321742-A321765.
%K A321748 sign,tabf
%O A321748 1,3
%A A321748 _Gus Wiseman_, Nov 20 2018