This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321748 #4 Nov 20 2018 16:30:14 %S A321748 1,1,2,-1,-1,1,3,-3,1,-3,5,-2,4,-2,-4,4,-1,1,-2,1,-2,3,2,-4,1,-4,2,7, %T A321748 -7,2,5,-5,-5,5,5,-5,1,4,-4,-7,10,-3,6,-6,-6,-3,2,6,12,-9,-6,6,-1,-5, %U A321748 9,5,-7,-9,9,-2,-5,5,11,-11,-8,10,-2,-1,1,2,-3,1,7 %N A321748 Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of h(v) in m(u), where H is Heinz number, m is monomial symmetric functions, and h is homogeneous symmetric functions. %C A321748 Row n has length A000041(A056239(n)). %C A321748 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %C A321748 Also the coefficient of e(v) in f(u), where e is elementary symmetric functions and f is forgotten symmetric functions. %H A321748 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a> %e A321748 Triangle begins: %e A321748 1 %e A321748 1 %e A321748 2 -1 %e A321748 -1 1 %e A321748 3 -3 1 %e A321748 -3 5 -2 %e A321748 4 -2 -4 4 -1 %e A321748 1 -2 1 %e A321748 -2 3 2 -4 1 %e A321748 -4 2 7 -7 2 %e A321748 5 -5 -5 5 5 -5 1 %e A321748 4 -4 -7 10 -3 %e A321748 6 -6 -6 -3 2 6 12 -9 -6 6 -1 %e A321748 -5 9 5 -7 -9 9 -2 %e A321748 -5 5 11 -11 -8 10 -2 %e A321748 -1 1 2 -3 1 %e A321748 7 -7 -7 -7 14 7 7 7 -7 -7 -21 14 7 -7 1 %e A321748 5 -7 -11 14 10 -14 3 %e A321748 For example, row 10 gives: m(31) = -4h(4) + 2h(22) + 7h(31) - 7h(211) + 2h(1111). %Y A321748 Row sums are A080339. %Y A321748 Cf. A005651, A008480, A048994, A056239, A124794, A124795, A135278, A300121, A319191, A319193, A321738, A321742-A321765. %K A321748 sign,tabf %O A321748 1,3 %A A321748 _Gus Wiseman_, Nov 20 2018