This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321750 #6 Nov 20 2018 16:30:31 %S A321750 1,1,1,0,1,2,1,0,0,1,1,0,1,0,0,0,0,1,3,6,1,2,0,0,0,1,0,1,0,0,1,0,0,0, %T A321750 0,0,0,1,2,2,2,0,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0,1, %U A321750 6,4,12,24,1,0,0,0,0,0,0,0,0,0,0,0,0,0 %N A321750 Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of m(v) in p(u), where H is Heinz number, m is monomial symmetric functions, and p is power sum symmetric functions. %C A321750 Row n has length A000041(A056239(n)). %C A321750 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %H A321750 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a> %e A321750 Triangle begins: %e A321750 1 %e A321750 1 %e A321750 1 0 %e A321750 1 2 %e A321750 1 0 0 %e A321750 1 1 0 %e A321750 1 0 0 0 0 %e A321750 1 3 6 %e A321750 1 2 0 0 0 %e A321750 1 0 1 0 0 %e A321750 1 0 0 0 0 0 0 %e A321750 1 2 2 2 0 %e A321750 1 0 0 0 0 0 0 0 0 0 0 %e A321750 1 1 0 0 0 0 0 %e A321750 1 0 1 0 0 0 0 %e A321750 1 6 4 12 24 %e A321750 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 %e A321750 1 1 2 2 0 0 0 %e A321750 For example, row 18 gives: p(221) = m(5) + 2m(32) + m(41) + 2m(221). %Y A321750 Row sums are A321751. %Y A321750 Cf. A005651, A008277, A008480, A048994, A056239, A124794, A124795, A319182, A319191, A321742-A321765. %K A321750 nonn,tabf %O A321750 1,6 %A A321750 _Gus Wiseman_, Nov 20 2018