cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321751 Sum of coefficients of monomial symmetric functions in the power sum symmetric function of the integer partition with Heinz number n.

This page as a plain text file.
%I A321751 #5 Nov 20 2018 16:30:38
%S A321751 1,1,1,3,1,2,1,10,3,2,1,7,1,2,2,47,1,6,1,6,2,2,1,26,3,2,10,6,1,6,1,
%T A321751 246,2,2,2,26,1,2,2,24,1,5,1,6,6,2,1,138,3,6,2,6,1,23,2,23,2,2,1,20,1,
%U A321751 2,7,1602,2,5,1,6,2,6,1,105,1,2,6,6,2,5,1,114
%N A321751 Sum of coefficients of monomial symmetric functions in the power sum symmetric function of the integer partition with Heinz number n.
%C A321751 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
%C A321751 Also the number of ordered set partitions of {1, 2, ..., A001222(n)} whose blocks, when i is replaced by the i-th prime index of n, have weakly decreasing sums.
%H A321751 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a>
%e A321751 The sum of coefficients of p(211) = m(4) + 2m(22) + 2m(31) + 2m(211) is a(12) = 7.
%t A321751 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];
%t A321751 Table[Sum[Times@@Factorial/@Length/@Split[Sort[Total/@s]],{s,sps[Range[PrimeOmega[n]]]/.Table[i->If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]][[i]],{i,PrimeOmega[n]}]}],{n,50}]
%Y A321751 Row sums of A321750.
%Y A321751 Cf. A005651, A008277, A008480, A056239, A124794, A124795, A296150, A319182, A319225, A319226, A321742-A321765.
%K A321751 nonn
%O A321751 1,4
%A A321751 _Gus Wiseman_, Nov 20 2018