This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321752 #4 Nov 20 2018 16:30:45 %S A321752 1,1,-2,1,0,1,3,-3,1,0,-2,1,-4,2,4,-4,1,0,0,1,0,4,0,-4,1,0,0,3,-3,1,5, %T A321752 -5,-5,5,5,-5,1,0,0,0,-2,1,-6,6,6,3,-2,-6,-12,9,6,-6,1,0,-4,0,2,4,-4, %U A321752 1,0,0,-6,6,3,-5,1,0,0,0,0,1,7,-7,-7,-7,14,7,7 %N A321752 Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of e(v) in p(u), where H is Heinz number, e is elementary symmetric functions, and p is power sum symmetric functions. %C A321752 Row n has length A000041(A056239(n)). %C A321752 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %H A321752 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a> %e A321752 Triangle begins: %e A321752 1 %e A321752 1 %e A321752 -2 1 %e A321752 0 1 %e A321752 3 -3 1 %e A321752 0 -2 1 %e A321752 -4 2 4 -4 1 %e A321752 0 0 1 %e A321752 0 4 0 -4 1 %e A321752 0 0 3 -3 1 %e A321752 5 -5 -5 5 5 -5 1 %e A321752 0 0 0 -2 1 %e A321752 -6 6 6 3 -2 -6 -12 9 6 -6 1 %e A321752 0 -4 0 2 4 -4 1 %e A321752 0 0 -6 6 3 -5 1 %e A321752 0 0 0 0 1 %e A321752 7 -7 -7 -7 14 7 7 7 -7 -7 -21 14 7 -7 1 %e A321752 0 0 0 4 0 -4 1 %e A321752 For example, row 15 gives: p(32) = -6e(32) + 6e(221) + 3e(311) - 5e(2111) + e(11111). %Y A321752 Row sums are A321753. %Y A321752 Cf. A005651, A008480, A056239, A124794, A124795, A135278, A296150, A319193, A319225, A319226, A321742-A321765, A321854. %K A321752 sign,tabf %O A321752 1,3 %A A321752 _Gus Wiseman_, Nov 20 2018