This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321754 #5 Nov 20 2018 16:31:03 %S A321754 1,1,2,-1,0,1,3,-3,1,0,2,-1,4,-2,-4,4,-1,0,0,1,0,4,0,-4,1,0,0,3,-3,1, %T A321754 5,-5,-5,5,5,-5,1,0,0,0,2,-1,6,-6,-6,-3,2,6,12,-9,-6,6,-1,0,4,0,-2,-4, %U A321754 4,-1,0,0,6,-6,-3,5,-1,0,0,0,0,1,7,-7,-7,-7,14 %N A321754 Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of h(v) in p(u), where H is Heinz number, p is power sum symmetric functions, and h is homogeneous symmetric functions. %C A321754 Row n has length A000041(A056239(n)). %C A321754 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %C A321754 Up to sign, same as A321752. %H A321754 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a> %e A321754 Triangle begins: %e A321754 1 %e A321754 1 %e A321754 2 -1 %e A321754 0 1 %e A321754 3 -3 1 %e A321754 0 2 -1 %e A321754 4 -2 -4 4 -1 %e A321754 0 0 1 %e A321754 0 4 0 -4 1 %e A321754 0 0 3 -3 1 %e A321754 5 -5 -5 5 5 -5 1 %e A321754 0 0 0 2 -1 %e A321754 6 -6 -6 -3 2 6 12 -9 -6 6 -1 %e A321754 0 4 0 -2 -4 4 -1 %e A321754 0 0 6 -6 -3 5 -1 %e A321754 0 0 0 0 1 %e A321754 7 -7 -7 -7 14 7 7 7 -7 -7 -21 14 7 -7 1 %e A321754 0 0 0 4 0 -4 1 %e A321754 For example, row 15 gives: p(32) = 6h(32) - 6h(221) - 3h(311) + 5h(2111) - h(11111). %Y A321754 Row sums are all equal to 1. %Y A321754 Cf. A005651, A008480, A056239, A124794, A124795, A135278, A319193, A319225, A319226, A321742-A321765, A321854. %K A321754 sign,tabf %O A321754 1,3 %A A321754 _Gus Wiseman_, Nov 20 2018