cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321755 Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of e(v) in s(u), where H is Heinz number, e is elementary symmetric functions, and s is Schur functions.

This page as a plain text file.
%I A321755 #4 Nov 20 2018 16:31:10
%S A321755 1,1,-1,1,1,0,1,-2,1,-1,1,0,-1,1,2,-3,1,1,0,0,0,1,-1,0,0,1,-1,-1,1,0,
%T A321755 1,-2,-2,3,3,-4,1,-1,0,1,0,0,-1,2,2,1,-1,-3,-6,6,4,-5,1,-1,1,2,-2,-1,
%U A321755 1,0,0,1,-1,1,-1,0,0,1,0,0,0,0,1,-2,-2,-2,6,3,3
%N A321755 Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of e(v) in s(u), where H is Heinz number, e is elementary symmetric functions, and s is Schur functions.
%C A321755 Row n has length A000041(A056239(n)).
%C A321755 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
%H A321755 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a>
%e A321755 Triangle begins:
%e A321755    1
%e A321755    1
%e A321755   -1   1
%e A321755    1   0
%e A321755    1  -2   1
%e A321755   -1   1   0
%e A321755   -1   1   2  -3   1
%e A321755    1   0   0
%e A321755    0   1  -1   0   0
%e A321755    1  -1  -1   1   0
%e A321755    1  -2  -2   3   3  -4   1
%e A321755   -1   0   1   0   0
%e A321755   -1   2   2   1  -1  -3  -6   6   4  -5   1
%e A321755   -1   1   2  -2  -1   1   0
%e A321755    0   1  -1   1  -1   0   0
%e A321755    1   0   0   0   0
%e A321755    1  -2  -2  -2   6   3   3   3  -4  -4 -12  10   5  -6   1
%e A321755    0  -1   1   0   0   0   0
%e A321755 For example, row 14 gives: s(41) = -e(5) + 2e(32) + e(41) - 2e(221) - e(311) + e(2111).
%Y A321755 Row sums are A036987.
%Y A321755 Cf. A000085, A008480, A056239, A082733, A124795, A153452, A296188, A300121, A304438, A317552, A317554, A321742-A321765.
%K A321755 sign,tabf
%O A321755 1,8
%A A321755 _Gus Wiseman_, Nov 20 2018