This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321757 #5 Nov 20 2018 16:31:23 %S A321757 1,1,1,2,1,2,1,4,3,2,1,5,1,2,3,10,1,7,1,5,3,2,1,13,4,2,11,5,1,8,1,26, %T A321757 3,2,4,20,1,2,3,14,1,8,1,5,13,2,1,38,5,10,3,5,1,32,4,14,3,2,1,23 %N A321757 Sum of coefficients of Schur functions in the elementary symmetric function of the integer partition with Heinz number n. %C A321757 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %H A321757 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a> %e A321757 The sum of coefficients of e(221) = s(32) + 2s(221) + s(311) + 2s(2111) + s(11111) is a(18) = 7. %Y A321757 Row sums of A321756. %Y A321757 Cf. A000085, A008480, A056239, A082733, A124795, A153452, A296150, A296188, A300121, A304438, A317552, A321742-A321765. %K A321757 nonn,more %O A321757 1,4 %A A321757 _Gus Wiseman_, Nov 20 2018